CURRICULUM GUIDE

Council for Technical Education and Vocational Training Curriculum Development Division Sanothimi, Bhaktapur

2006

Table o	f Contents
---------	-------------------

Introduction	
Aims	
Objectives	
Course Description	
Course duration	
Target Group	
Target location	
Group Size	
Medium of Instruction	4
Pattern of Attendance	4
Focus of Curriculum	4
Entry Criteria	4
Instructional Media and Materials	
Teaching Learning Methodologies	5
Follow up Provision	
Grading System	
Students Evaluation Details	
Trainers' Qualification (Minimum)	
Trainer-Trainees Ratio	5
Suggestions for Instruction	6
Certificate Requirements	7
Skill Testing Provision	7
Model of Training	<u> </u>
Course Structure for Micro hydro Technician	0
Module Resic Module	
Module: Basic Civil Works	
Module: Basic Civil Works	
Sub module: Concept of Electricity	
Sub module: Concept of Electricity	,
Sub module: Single phase Wiring	,
Sub module: Single-phase Wiring	
Sub module: Forthing System	,
Sub module: Earthing System	
Module: Electro Mechanical Installation works	
Module: Arc weiding	OU
Sub module: Overhead Transmission and Distribution line Exection	
Sub module: Overnead Transmission and Distribution line Erection	
Sub module: Underground Distribution line Erection	······ ð3
Sub module: Service mains and Load limit Switch	
Sub module: Protection System in Transmission and Distribution Line	
Module: Testing & Commissioning Works	
Module: Micro-hydro Plant Management	103
Nodule: Small Enterprise Development	111
Sub module: Generic Skills	112
Sub module: Entrepreneurship Development	120
DACUM (Job Analysis) of Micro-hydro Technician	129
List of Tools and Equipment	134
References	135
Experts involved	136
Glossary used in the technical and vocational curricula	137

Introduction

The competency based and market oriented curriculum guide for **Micro-hydro Technician** is designed to produce employable multi skilled workforce equipped with knowledge, skills, and attitudes related to the occupation. In this curriculum, the trainees will practice skills of installation of micro hydro in the related occupation. Once the trainees acquired competencies they will have ample opportunity for wage employment and self-employment through which they will contribute in the national streamline of poverty reduction in the country.

The feature of this curriculum is to focus on entrepreneurship development in order to create self-employment opportunity. Applied mathematics, applied English, applied drawing, introductory micro hydro and bench work are focused in this curriculum. It is considered that the basic knowledge and skills included will prepare the trainees to learn the specialized contents so that they can be competent technician needed for the occupation. Another major feature of this curriculum is the incorporation of the drop-out youths who have only the class eight schooling experience. The curriculum is designed on the basis of modular modality so that it will be successful to meet the needs of individuals, community, and industry.

Aims

The main aim of this program is to produce employable skilled **Micro-hydro Technician** who could provide services in the micro-hydro industries in the country.

To produce such human resources through institutional training program followed by "On the Job Training (OJT)" is made mandatory. This provision provides the trainees the opportunity for maximum experience & exposure of "The World of Work."

The graduates of this program will be able to be employed or be an entrepreneur.

Objectives

The main objective of this curricular program is to produce skilled workforce of the field of micro-hydro. Moreover, general objectives of the program are:

- 1. Develop the concept on micro hydro.
- 2. Learn and apply simple English language for effective communication.
- 3. Perform simple mathematical problems related to occupation.
- 4. Perform electrical works.
- 5. Perform civil works related with micro hydro.
- 6. Develop concept & interpretation of MH design drawings.
- 7. Install electro mechanical equipments.
- 8. Perform welding associated with micro hydro plant.
- 9. Erect transmission & distribution line.
- 10. Perform house wiring.
- 11. Explain the concept of socio-economic aspects of micro hydro.
- 12. Perform testing & commissioning of micro hydro power plant.
- 13. Manage micro hydro plant.
- 14. Develop entrepreneur skills to an entrepreneur.
- 15. Develop generic skills for adopting in the new situation and technologies.

Course Description

This curriculum guide is based on the job required to be performed by micro hydro technician at micro hydro projects in Nepal. Therefore, this curriculum guide is designed to equip the trainees with skills & knowledge in the micro hydro occupation. This curriculum is designed in modular approach with the prerequisite of basic module. This program consists of seven modules viz, (1) basic module, (2) basic civil works, (3) basic electrical works, (4) electro- mechanical installation works, (5) welding, (6) Power distribution works, (7) testing and commissioning works and, (8) Micro hydro plant management and (9) entrepreneurship development.

Basic module consists of introductory micro hydro, applied English, applied mathematics, applied drawing and bench work.

The provision of On-the- Job Training (OJT) is included to provide the trainees the opportunities to have experience and exposure of "The World of Work" as well as practice the critical competencies.

The duration of particular modules will be as mentioned in the course structure. There will be demonstration by instructors/trainers and the opportunity to practice skills/tasks necessary for this level of technician. Trainees will practice & learn skills using typical tools, equipment, machines, and materials necessary for the program.

Course duration

The total duration of the course extends over 12 months (i.e. 9x130 hours in house training + 3x160 hours OJT=1650). The total duration of in-house training and OJT are 9 months and 3 months respectively. After the completion of all modules, the trainees should undergo OJT for the period as mentioned on the course structure. Trainees will learn and practice the knowledge and skills at the institutional level and apply them during the period of OJT so as to have exposure/ experience of the "world of work." Entrepreneurial skills will be provided at the end of training to make the trainees competent and orient them for self-employment.

Target Group

The target group for this training program will be school leavers having minimum of class eight educations. Priority will be given to the individual of rural, poor, and disadvantaged groups.

Target location

The target location for this training program will be all over Nepal.

Group Size

The group size for this training program will be maximum 30, provided all necessary resources to practice the tasks/ competencies as specified in this curriculum guide.

Medium of Instruction

The medium of instruction for this program will be Nepali or English or both

Pattern of Attendance

The trainees should secure 80% attendance in theory classes and 90% in practical performance to be eligible for final examination.

Focus of Curriculum

This is a competency-based curriculum. This curriculum emphasizes on competency performance. 80% time is allotted for performance and remaining 20% time is for related technical knowledge. So, the main focus will be on performance of the specified competencies in this curriculum. The provision of OJT is made to practice the critical tasks during the stated period.

Entry Criteria

Individuals who meet the following criteria will be allowed to enter this curricular program:

- Minimum of eight class pass
- Nepali citizen
- Minimum of 15 years of age
- Should pass entrance examination

Instructional Media and Materials

The following instructional media and materials are suggested for the effective instruction and demonstration.

- Printed Media Materials (Assignment sheets, Case studies, Handouts, Information sheets, Individual training packets, Procedure sheets, Performance Check lists, Textbooks etc.).
- Non-projected Media Materials (Display, Models, Flip chart, Poster, Writing board etc.).
- Projected Media Materials (Opaque projections, Overhead transparencies, Slides etc.).
- Audio-Visual Materials (Audiotapes, Films, Slide-tape programs, Videodiscs, Videotapes etc.).
- Computer-Based Instructional Materials (Computer-based training, Interactive video etc.).

Teaching Learning Methodologies

The methods of teachings for this curricular program will be a combination of several approaches. Such as Illustrated Lecture, Group Discussion, Demonstration, Simulation, Guided practice, Practical experiences, Fieldwork and Other Independent learning.

Theory: Lecture, Discussion, Assignment, Group work.

Practical: Demonstration, Observation, Guided practice and Self-practice.

Follow up Provision

First follow up: Six months after the completion of the program

Second follow up: Six months after the completion of the first follow up

Follow up cycle: In a cycle of one year after the completion of the second follow up for five years

Grading System

The trainees will be graded as follows based on the marks in percentage secured by them in tests/ evaluations.

- Distinction: Passed with 80% or above
- First Division: passed with 75% or above
- Second Division: passed with 65% or above
- Third Division: passed with 60% or above

Students Evaluation Details

- Continuous evaluation of the trainees' performance is to be done by the related instructor/ trainer to ensure the proficiency over each competency under each area of sub-module.
- Related technical knowledge learnt by trainees will be evaluated through written or oral tests as per the nature in the institutional phase of training.
- Trainees must secure minimum marks of 60% in an average of both theory and practical evaluations.
- There will be three internal evaluations and one final evaluation in each module at institution.
- The ratio between internal and final examination of knowledge test will be 20:80 but for the performance test it will be 80:20.
- The entrance test will be administered by the concerned training institute
- The OJT will be evaluated according to the OJT details stated in the curriculum

Trainers' Qualification (Minimum)

- Diploma in Electrical, Mechanical and/or Civil Engineering
- Good communicative and instructional skills
- Experience in micro hydro

Trainer-Trainees Ratio

• 1:10 for practical classes

• For theory, as per the class room situation

Suggestions for Instruction

- 1. Select objectives
 - Write objectives of cognitive domain.
 - Write objectives of psychomotor domain.
 - Write objectives of affective domain

2. Select Subject matter

- Study subject matter in detail.
- Select content related to cognitive domain.
- Select content related to psychomotor domain.
- Select content related to affective domain.

3. Select Instructional Methods

- Teacher centered methods: like lecture, demonstration, question answers inquiry, induction and deduction methods.
- Student initiated methods like experimental, field trip/excursion, discovery, exploration, problem solving, and survey methods.
- Interaction methods like discussion, group/team teaching, microteaching and exhibition.
- Dramatic methods like role play and dramatization
- 4. Select Instructional method (s) on the basis of objectives of lesson plans and KAS domains.
- 5. Select appropriate educational materials and apply at right time and place.
- 6. Evaluate the trainees applying various tools to correspond the KAS domains.
- 7. Make plans for classroom / field work / workshop organization and management.
- 8. Coordinate among objectives, subject matter and instructional methods.
- 9. Prepare lesson plan for theory and practical classes.
- 10. Deliver /conduct instruction / program.
- 11. Evaluate instruction/ program.

Special suggestion for the performance evaluation of the trainees

- 1. Perform task analysis.
- 2. Develop a detail task performance checklist.
- 3. Perform continuous evaluation of the trainees by applying the performance checklist.

Suggestion for skill training

- 1. Demonstrate task performance in normal speed.
- 2. Demonstrate slowly with verbal description of each and every step in the sequence of activity of the task performance using question and answer techniques.
- 3. Repeat 2 for the clarification on trainees demand if necessary.
- 4. Perform fast demonstration of the task.

Provide trainees the opportunities to practice the task performance demonstration

- 1. Provide opportunity to trainees to have guided practice.
- 2. Create environment for practicing the demonstrated task performance.
- 3. Guide the trainees in each and every step of task performance.
- 4. Provide trainees to repeat and re-repeat as per the need to be proficient on the given task performance.
- 5. Switch to another task demonstration if and only trainees developed proficiency in the task performance.

Other suggestions

- 1. Apply principles of skill training.
- 2. Allocate 20% time for theory classes and 80% time for task performance while delivering instructions.
- 3. Apply principles of learning relevant to the learners' age group.
- 4. Apply principles of intrinsic motivation.
- 5. Facilitate maximum trainees' involvement in learning and task performance activities.
- 6. Instruct the trainees on the basis of their existing level of knowledge, skills and attitude.

Certificate Requirements

The related training institute will provide the training certificate in "**Micro-hydro Technician**" based on the related OJT completed as per the model of the curriculum. However; individuals who complete Module (s) of the institutional training will receive the certificate of the particular module completed.

Skill Testing Provision

The graduates who have the completion certificate of this program may sit in the skill test of level two. The following competencies will be considered for the development of skill standard of level two.

- 1. Develop the concept on micro hydro.
- 2. Perform simple mathematical problems related to occupation.
- 3. Perform electrical works.
- 4. Perform civil works related with micro hydro.
- 5. Develop concept & interpretation of MH design drawings.
- 6. Install electro mechanical equipments.
- 7. Perform welding associated with micro hydro plant.
- 8. Erect transmission & distribution line.
- 9. Perform house wiring.
- 10. Explain the concept of socio-economic aspects of micro hydro.
- 11. Perform testing & commissioning of micro hydro power plant.
- 12. Manage micro hydro plant.
- 13. Develop entrepreneur skills essential for micro hydro technician to an entrepreneur
- 14. Develop generic skills for adopting in the new situation and technologies.

Model of Training for Micro-hydro Technician Entry Basic **Specialized Modules Common module** OJT **Completion and Certification** requirement Common Module **M**1 **M 8: Small Enterprise** OJT M 2 Development Micro-hydro Technician **M** 3 BM **M4** Ε S \rightarrow M 5 **M 6 M**7

Model of Training

E = Entry S = Start BM = Basic Module

S.N.	Code	Modules	Nature	Total hours	Full marks
1	M 0	Mo: Basic Module	T+P	220	200
2	M1	M1: Basic Civil Works	T+P	50	50
3	M 2	M2: Basic Electrical Works	T+P	200	200
4	M 3	M3: Electro- Mechanical Installation Works	T+P	50	50
5	M4	M4: Arc Welding	T+P	120	100
6	M 5	M5: Power Distribution Works	T+P	240	200
7	M6	M6: Testing and Commissioning Works	T +P	150	100
8	M7	M7: Micro-hydro Plant Management	T+P	70	50
9	M8	M8: Small Enterprise Development	T+P	70	50
		Sub total		1170	1000
		On-the-Job Training (OJT)	Р	480	300
		Total		1650	1300

Course Structure for Micro-hydro Technician

Note: OJT commences after the completion of the above-mentioned modules

Module Code: M0 Module: Basic Module

Description

This module is designed to equip trainees with the knowledge and skills on Basic Module as a prerequisite for mastering any specialized module/s. This module intends to provide foundation for modular curriculum in micro hydro technician. This module especially, deals with; introductory contents of micro hydro, applied English, applied mathematics, applied drawing and bench work related to micro-hydro as mentioned in the course structure.

Aim

This module aims to equip trainees with knowledge and skills to master any specialized module.

Objectives

After completion of this module the trainees will be able to:

- 1. Develop the basic concept on micro-hydro operation.
- 2. Learn and apply simple English language for effective communication.
- 3. Perform simple mathematical problems related to occupation.
- 4. Develop concept & interpretation of MH design drawings.
- 5. Perform bench work related to occupation.

Prerequisite: Nil

Duration: 220 hours

S.N.	Code	Sub-modules	Nature	Total	Full
				hours	marks
1	SM 0.1	Introductory Micro-hydro	T+P		
2	SM 0.2	Applied English	Т		
3	SM 0.3	Applied Mathematics	Т	220	200
4	SM 0.4	Applied Drawing	T+P		
5	SM 0.5	Bench work	T+P		
Total			220	200	

Module Structure (M 0)

Module Code: M 0 Sub module Code: SM 0.1 Sub module: Introductory Micro hydro

Description

This course is designed to help trainees to provide knowledge on Micro Hydro Technology as a sub module for mastering any specialized module/s. This sub module deals with the basic concept of micro hydro, functional division of micro hydro, components of generation, components of distribution and components of consumption.

Prerequisite: Nil

Duration: 10 hours

Competencies

1. Explain the concept of micro hydro.

The basic principle of hydropower is that if water can be piped from a certain level to a lower level, then the resulting water pressure can be used to do work. If the water pressure is allowed to move a mechanical component then that movement involves the conversion of the potential energy of the water into mechanical energy. Hydro turbines convert water pressure into mechanical shaft power, which can be used to drive an electricity generator, a grinding mill or some other useful device.

To know the power potential of water in a river it is necessary to know the flow in the river and the available head.

The flow of the river is the amount of water (in m3 or litres) which passes in a certain amount of time a cross section of the river. Flows are normally given in cubic meters per second (m3/s) or in litres per second (l/s).

Head is the vertical difference in level (in meters) the water falls down.

The theoretical power (P) available from a given head of water is in exact proportion to the head H and the flow Q.

$$P=Q \times H \times c$$
 $c = constant$

The constant c is the product of the density of water and the acceleration due to gravity (g).

If P is measured in Watts, Q in m3/s and H in meters, the gross power of the flow of water is:

$$P=1000 \times 9.8 \times Q \times H$$

This available power will be converted by the hydro turbine in mechanical power. As a turbine has an efficiency lower than 1, the generated power will be a fraction of the available gross power.

Micro hydro in Nepal is defined as hydropower installations with a power output less than 100 kW

2. Enlist the functional division of micro hydro.

- Generation division
- Transmission and Distribution division
- Consumption division

3. Enlist the component of generation.

Diversion weir, Intake, Intake gate, Stop logs ,Course trash rack, Flood canal, Gravel trap Head race canal, Open canal, Forebay, Spillway, Penstock Contraction and Expansions joint, Saddles, Powerhouse, Machine foundation, Tailrace, Penstock support, Valve (Butterfly and spherical), Turbine (Cross flow, Peltron), Generator (Synchronous and Induction), Control panel, Load controller, Governor.

4. Enlist the component of distribution.

Time totalizer, Single phase wire, Three phase wire, Transformer, Switchgear, Moulded-case circuit breaker (MCCB),Lightning, Earthing, Overhead transmission / distribution lines, Underground transmission lines, Service lines, Overhead distribution board connections, Pole.

5. Enlist the component of consumption.

Wire, Bulb, Main switch, Meter, and Moulded-case circuit breaker (MCCB).

Module Code: M0 Sub module Code: SM 0.2 Sub module: Applied English

Description

This course is designed to equip trainees with the skills and knowledge Applied as a sub module for mastering any specialized module/s. This sub module especially, intends to familiarize trainees with the occupation related terminologies, interpretation of order slip, maintenance slip and equipment manual.

Prerequisite: Nil

Duration: 40 hours

Competencies

1. Define micro hydro related terminologies.

1.1 Terminologies in Civil Component

River flow, Design Flow, Flow duration curve (FDC), Flood flow, Low flow, Return period, Eleven months Exceedence, Hydrology, Hydrograph, Diversion weir, Intake, Intake gate, Stop logs ,Course trash rack, Trapping efficiency, Flood canal, Gravel trap Gross head, Net head, Surge Head, Design head, Head loss, Bed load, Head race canal, Open canal, Water level, Freeboard, High Density Polythene Pipe, Bed slope, Pressure pipes, Flow velocity, Sediment deposition, Grain size, Forebay, Spillway, Stone masonry, Concrete masonry, Hydraulic forces Contraction, Expansions, Friction, Saddles, Self weight, Powerhouse, Machine foundation, Tailrace, Plant size, Plant capacity and Reinforced concrete.

1.2 Terminologies in Electro Mechanical Component.

Flushing device, Slide gate, Penstock, Penstock support, Mild steel, Air valves, Vent pipes, Gate valve, Valve (Butterfly and spherical), Expansion joint, Turbine (Cross flow, Peltron), Efficiency, Generator (Synchronous and Induction), Power drive, Belt (V belt and flat belt), Control panel, Load controller, Governor, Dump load, Ballast, Generated voltage, Frequency, Load current, Ballast voltage or stepped indicators, Time totalizer, Single phase, Three phase, Transformer, Switchgear, Moulded-case circuit breaker (MCCB), Lightning and Earthing.

1.3 Terminologies Transmission and Distribution Line

Overhead transmission / distribution lines, Underground transmission lines, Service lines, Overhead distribution board connections, Pole height, Ground clearance, House wiring and Bulb.

- 2. Interpret order slip and maintenance slip.
- 3. Interpret equipment manual.
- 4. Interpret operation manual.

Module Code: M 0 Sub module Code: SM 0.3 Sub module: Applied Mathematics

Description

This module is designed to equip trainees with the knowledge and skills on Applied Mathematics as a sub module for mastering any specialized module/s. This sub module deals with mathematical skills such as unit conversion, fraction, measurement, simple geometric concept, volume and quantity calculation, cost calculation as well as other calculations related to their occupation.

Prerequisite: Nil

Duration: 40 hours

- 1. Review basic mathematical calculations
- 2. Convert unit of measurement from one system to another system
- 3. Measure length, breadth and height of the object /geometrical figure
- 4. Calculate perimeter of the geometrical figures (triangle, square, rectangle, circle, polygon)
- 5. Calculate area (rectangle, circle, trapezoid, triangle etc)
- 6. Measure mass/density/weight/capacity/Volume of solid and liquid
- 7. State ratio and proportion
- 8. Calculate the quantity of materials required
- 9. Measure the quantity of work performed
- 10. Calculate the total cost of work performed
- 11. Calculate loss, profit and simple interests
- 12. Apply simple unitary rule.

Module Code: M 0 Sub module Code: SM 0.4 Sub module: Applied Drawing

Description

This module is designed to equip trainees with the skills and knowledge on Applied Drawing as a basic module related to the occupation. This module intends to provide skills on interpreting scale, symbols and sign convention, different lines and views. It also focuses on interpreting different views such as plan, elevation, section, isometric, orthographic and photographic.

Prerequisite: Nil

Duration: 50 hours (13 hours theory and 37 hours practical)

- 1. State the concept of drawing.
- 2. Read / Interpret scale.
- 3. Apply/interpret different symbols and sign conventions (hatching) in the drawing.
- 4. Draw different types of lines.
- 5. Draw free hand sketches.
- 6. Draw lay-out diagram.
- 7. Draw wiring diagram.
- 8. Draw schematic drawing.
- 9. Draw connection diagram.
- 10. Interpret plan, elevation & section view.
- 11. Interpret isometric view.
- 12. Interpret 3 view drawing (front, side and top).
- 13. Interpret photographic view.

Module Code: M 0 Sub module Code: SM 0.5 Sub module: Bench Work

Description

This module is designed to equip trainees with the knowledge and skills on Bench Work as a sub module for mastering any specialized module/s. This sub module especially, intends to provide skills and knowledge on mechanical and electrical bench work related to the occupation.

Prerequisite: Nil

Duration: 80 hours (16 hours theory and 64 hours practical)

- 1. Orient with safety rules
- 2. Measure/mark/file/saw work piece
- 3. Drill a hole
- 4. Measure the dimension using Vernier Caliper
- 5. Measure angular surface using Bevel Protractor
- 6. Countersink on hole
- 7. Bend flat steel
- 8. Grind center punch
- 9. Grind flat chisel
- 10. Perform internal threads using hand taps
- 11. Perform external threads using threading dies
- 12. Perform cable/wire joint straight (straight, T- joint, married, brittamia)
- 13. Make wire/cable eyelet.
- 14. Manufacture a C clamp (Project work).

Task No. 1 Orient with safety rules.

	Performance steps	Terminal Performance	Related Tec	hnical
		Objectives	Knowled	lge
1. 2.	Define safety. Enlist importance of safety precaution. Enlist workshop bazards	Class room	 Definition of Importance of rules Workshop has 	safety safety
4.	Enlist workshop hazards. Enlist personal safety rules and regulations.	board and marker, handouts and safety	 Personal and v safety rules and 	workshop nd
5.	Enlist workshop safety rules and regulations.	poster. <u>Task (What):</u>	regulations	
		Orient with safety rules.		
		Standard (How well):		
		Various safety rules and regulation oriented.		

Tools/equipment: Safety:

Task No: 2 Measure/mark/file/saw work piece.

Dorformance Stong	Terminal Performance	Related Technical
renormance steps	Objectives	Knowledge
1 Measurement:	Condition (Given):	Measurement system
1.1 Measure the dimension.		Conversion of units
(Inch/centimeter, millimeter,		Marking system
meter)	Measuring tape, marking	Method of filing
2. Marking:	scriber, file, hammer,	Method of sawing
2.1 Measure the dimension as per drawing.	work piece.	 Identification of tools
2.2 Mark the point by using		Procedure
scriber or pencil.		Safety precaution
3. Filling		
3.1 Read drawing	Task (What):	
3.2 Measure the work piece by		
using scale.	Measure/mark/file/saw	
3.3 clamp work piece on the vice.	work piece	
3.4 File the work piece using appropriate file.		
3.5 Check filling surface level and perpendicular using by		
back square.	Standard (How well):	
3.6 Measure the final dimension.		
3.7 Clean work place.	Work piece measured.	
4. Sawing:	Work piece filed.	
4.1 Mark on the work piece as per drawing.	Right angle maintained. Straight sawn	
4.2 Clamp the work piece on the bench vice.		
4.3 Collect and fix hacksaw blade on hacksaw.		
4.4 Saw on the work piece.		
4.5 Apply coolant.		

Tools/equipment:

Marking scriber/Measuring tape/File/Hack saw frame/, Steel scale/Bench vice Safety:

- Fix the saw blade properly
- Clamp the work piece properly.
- Apply coolant while sawing.
- Reduced pressure on saw just before the separation.

Task No: 3 Drill a hole.

Performance Steps	Terminal Performance	Related Technical
 Performance Steps Obtain drawing. Obtain required tools and equipment. Obtain finished work piece. Mark layout line on the work piece. Punch the center. Clamp the work piece on the machine vice. Mount the required drill bit on drill chuck. Set up R.P.M. as per drill bit size. Set coolant-housing pipe. Start the machine & give hand feed. Drill until obtaining required depth. Stop the machine. Remove the work piece from vice & clean it. Measure the center & the hole size according to the drawing. Remove the drill bit & clean tools & working place. 	ObjectivesObjectivesCondition (Given):Well equipped workshop, drill machine, drill bit set, refinished work piece, steel rule, scriber, center punch, hammer, safety goggles coolant.Task (What):Drill a hole.Standard (How Well):Work piece clamping checked.Drill bit mounting checked.Selection of R.P.M.checked.Selection of R.P.M.checked.	 Knowledge Importance of drill machine Types of drill machine. Drill bits & its types. Importance of speed feed R.P.M. Calculation of R.P.M. Procedure Safety precautions

Tools/equipment: Safety:

- Tighten the work piece perfectly.
- Check drill bit cutting edge before drilling
- Use safety goggles.
- Never use very loose cloth, tie, chain etc.
- Use clan brush to clean the chips.
- Follow general safety rules.

Task No: 4 Measure the dimension using vernier caliper.

Performance Steps	Terminal Performance	Related Technical
1 Obtain pre-machined W/P	Condition (Civon):	Introduction &
2 Obtain vernier caliper	Vernier caliper work	Features of vernier
3 Clean the caliner & check that the	piece with well-equipped	caliper
caliper reads correctly	fitter shop	\blacktriangleright Reading scale &
4 Clean the work nieces & remove	nuer snop.	uses of vernier
hurrs		caliper
5. Measure outside dimension		 Least count & care
6 Set the outside measuring jaw to a		of vernier caliper
dimension larger than that to be		 Procedure
measured.		 Safety precautions
7. Place the work piece between the	Task (What):	
two jaws.		
8. Move the sliding jaw so that the	Measure the dimension	
caliper grips the W/P.	using vernier caliper.	
9. Make sure that the jaws are in full		
contact with W/P.		
10. Read the number of millimeters		
on the main scale, which show in		
front of the zero of the vernier	Standard (How Well):	
scale.	Outside & inside	
11. Read the tenths of mm (0.1) or	dimensions measured.	
twentieths (0.05) on the vernier		
scale.		
12. Add together both reading		
13. Measure inside dimension.		
14. Set the inside measuring jaws of		
the caliper to a dimension smaller		
than the dimension be measured.		
15. Place the jaws against the W/P.		
16. Move the sliding jaw so that the		
caliper grafts the work piece.		
17. Read the measurement as the out		
side dimension.		

Tools/equipment

- Clean the W/P & vernier caliper before use.
- Use vernier caliper only for measuring.
- Clean the vernier caliper after use & store it safely.

Performance steps	Terminal Performance Objectives	Related Technical Knowledge
 Obtain pre-machined work-piece material. Obtain Bevel protractor. Set the angle that has to be measure. Hold the work-piece in one hand and place the bevel of the protractor against the adjacent aurface 	Condition (Given): Bevel protractor with fully equipped mechanical workshop.	 Introduction of bevel protractor Types of protractor Uses of bevel protractor Procedure Safety precaution
 Slide the bevel down the vertical surface until the protractor blade touches the angular surface. Position the work so that a bright light, such as a window or an electric light, is behind the work- piece. 	Tasks (What): Measure angular surface using bevel protractor.	
 6. Look at between work-piece and protractor to see if any light shows between the blade and the work-piece. If no light can be seen, the surfaces of the work-piece are at required angle. 8. Wipe the Bevel protractor clean and put it in its storing place. 	Standards(How well): Work-piece rechecked. Angle on Bevel protractor set.	

Task 5: Measure angular surface using bevel protractor.

- Clean the W/P & bevel protractor before use.
- Use bevel protractor only for measuring.
- Clean the bevel protractor after use & store it safely.

Task 6: Countersink on hole.

Performance steps	Terminal Performance Objectives	Related Technical Knowledge
 Obtain workshop drawing. Obtain previously drilled work- piece material 	Condition (Given):	 Introduction to Countersink Uses of countersink
 Obtain countersink as per required size. 	Drill machine with fully equipped workshop.	 Procedure Safety precaution
4. Mount the same size of twist drill on drill spindle or drill chuck.5. Clamp the work-piece in drill	Tasks (What):	
vice or hold by hand placing at the machine table.	Countersunk a hole.	
6. Align the center of machine spindle with the drilled hole to cut uniform angle.	Standards(How well):	
7. Change countersink on machine	Work-piece clamped.	
8. Set up RPM.	RPM setting checked.	
9. Start the machine.10. Check the alignment giving feed by hand.	countersink checked	
11. Re-align if necessary.12. Give feed as per depth required.		
13. Stop the machine. 14. Remove work-piece		
15. Chamfer if necessary.16. Check the final measurement.		

- Avoid cleaning chips by blowing or bare hand.
- Check the countersink that it is blunt or not.
- Use Drift to remove taper shank from drill spindle.
- Refer also the safety precautions of Task Drill a hole.

Task: 7 Bend flat steel.

Dorformongo Stong		Terminal Performance		Related Technical
	Fertormance Steps	Objectives		Knowledge
1.	Obtain the required drawing.	Condition (Given):-	\checkmark	Introduction to
2.	Study the drawing carefully.			bending and bending
3.	Obtain the required tools.	Workshop		types
4.	Obtain the required work piece	Work piece	\triangleright	Procedure
	(PVC/metal pipe).	Drawing	\triangleright	Safety precautions
5.	Mark centre and bending area			
	according to the drawing.	Task (What):-		
6.	Clamp pipe on near centre on	<u> </u>		
	pipe vices firmly.	Bend flat steel.		
7.	Hold the pipe vices handle in			
	correct position.	Standard (How well).		
8.	Bend pipe slowly on the	<u>Stundard (110 wen</u>):		
	according bending degree.	Pipe banded on right		
9.	Restore the tools/materials.	degree		
10	. Clean the work area.	Measurement Performed		
		Performed Centre of		
		handing performed		
		bending performed.		

Tools /Equipment:

Steel scale, scriber, pipe vice, divider.

Safety:

• Don't apply too much pressure while bending, do slowly.

Task 8 : Grind center punch.

Performance steps	Terminal Performance Objectives	Related Technical Knowledge
 Obtain Bench or Pedestrian grinding machine. Obtain blunt center punch. Obtain Safety goggles, Bevel protractor or grinding gauge. Check the grinding wheel abrasive type, trueness of wheel and cracks. 	<u>Condition (Given):</u> Bench or Pedestrian grinding machine, with fully equipped workshop.	 Introduction of center punch Uses of center punch. Procedure Safety precautions
 6. Check the tool-rest, set up if necessary. 7. Hold center punch left hand side pointing the tip towards wheel. 8. Wear safety goggles 9. Run the machine. 10. Touch the angular part of tip on face of wheel, holding left hand side so that it can be turn freely by right hand side. 11. Give feeding slightly rotating the punch. 12. Check the angle with gauge or Bevel protractor. 13. Repeat the grinding until desired angle and sharpened tip obtained. 	Tasks (What):Grind center punch.Standards(How well):Punch holding checkedWheel dressing checked.Grinding process checked.Tip angle checked.	

- Make sure the grinding wheel guards are in place.
- Always wear safety goggles.
- Avoid working on grinding wheels which are loaded or glazed.
- It is dangerous to working cracked or improperly balanced wheels.
- Adjust the tool-rest as close to the wheels as possible. The maximum recommended gap is 2mm.
- Small jobs should be held with pliers or other suitable tools.
- Never holds jobs with cotton waste or similar materials.
- Use gloves while grinding heavy jobs.

Task 9 : Grind flat chisel.

Performance steps	Terminal Performance Objectives	Related Technical Knowledge
 Obtain Bench or Pedestrian grinding machine. Obtain blunt Flat chisel. Obtain Safety goggles, Bevel protractor or grinding gauge. Check the grinding wheel abrasive type, trueness of wheel 	Condition (Given): Bench or Pedestrian grinding machine, with fully equipped workshop.	 Introduction of chisels Uses of chisels Procedure Safety precautions
 5. Dress the wheel, if necessary. 6. Set up tool-rest if necessary. 7. Hold Flat chisel by both hand pointing the tip towards wheel. 8. Wear safety goggles 9 Run the machine. 	Tasks (What): Grind flat chisel.	
10. Position the angular part of tip up ward on face of wheel, fronting left hand side so that it can be move freely by right hand side.	Standards(How well): Chisel holding checked Grinding process checked.	
 Give feeding slightly moving across the full face. Check the angle with gauge or Bevel protractor. Repeat the grinding until desired angle and sharpened tip obtained. 	Tip angle checked.	

- Move the work across the full face of the wheel to prevent uneven wearing off of the grinding wheel.
- Refer the same safety precautions of the task grind center punch.

Task 10: Perform internal threads using hand taps.

Performance steps	Terminal Performance Objectives		Related Technical Knowledge
1. Obtain workshop drawing.		\triangleright	Introduction of taps
2. Obtain pre-machined work material.	Condition (Given):	\triangleright	Types of taps
3. Obtain drill size for internal thread.		\triangleright	Procedure
4. Obtain sets of taps and tap handle.	Drill machine, Working	\succ	Safety precautions
5. Mark the piece using height gauge.	Bench, Bench vice with		• •
6. Punch on center to drill hole.	fully equipped workshop.		
7. Clamp the work-piece on drill vice.			
8. Drill a hole as for internal thread.	Tasks (What):		
9. Chamfer a hole.			
10.Remove & re-clamp the work-piece on	Perform internal thread using		
Bench vice in horizontal position, slightly	hand taps.		
above the vice jaws.			
12. Fix the first tap in the tap handle.	Standards (How well):		
13.Position in the chamfered hole.	Tan alignment checked		
14.Hold tap handle close to the center.	rup ungiment enceked.		
15.Exert steady downward pressure & turn	Tap turn backward after every		
the tap handle slowly in a clock wise	quarter turn checked.		
direction to start the thread.			
16.Ensure the thread start, check the tap			
alignment removing tap handle.			
17.Check the alignment placing Back square in			
2 position 90° to each other.			
18. Make correction if necessary, exerting			
slightly more pressure on the opposite			
side of the tap inclination.			
19. Fit the tap handle, without disturbing			
the tap alignment.			
20.Make 1-2 turn & check the alignment.			
21.Turn the tap handle lightly without			
exerting any downward pressure.			
22 Turn backward about quarter turn.			
23.Cut continue, turning backward			
frequently about every quarter turn.			
24.Cut the thread until the tap is fully			
inside the hole being threaded.			
25.Finish & clean up with intermediate &			
plug tap following the step 21 to 25.			
26.Remove the chips from the thread			

- Use a cutting fluid while cutting the thread.
- Avoid apply side pressure without giving a turning motion to the tap.
- The tap alignment should be corrected within the first few turns. Afterwards this cannot be done for the threads will break.

Performance steps	Terminal Performance Objectives	Related Technical Knowledge
 Obtain workshop drawing. Obtain workshop material. Obtain sets of Sets of files Obtain Hole gauge, Caliper, Threading die and Die handle and Check nut. Mark square at the end face as per thread diameter. File out rough, following the same steps of Filing square block 	Condition (Given): Sets of thread cutting dies, Die stock, working bench and Bench vice with fully equipped workshop.	 Introduction of threading dies and die handle Identification of blank size Procedure Safety precautions
 File round bar for blank size, following the steps of file external radius. Check the blank size with hole gauge. Re-file if necessary until the blank diameter obtain. Chamfer at the end of the blank 45°. Fix the Die in the Die handle. 	Tasks (What): Perform external thread using threading dies.	
 12.Re-clamp the work-piece on vice projecting the blank above the vice just the required thread length. 13.Place the leading side of the die on the chamfer of the work-piece. 14.Make sure that the die is fully open by tightening the center screw. 15.Hold die handle close to the center. 16.Apply pressure on dia handle evenly & turn in a clockwise direction to advance the die on the bolt blank 17.Ensure the thread start, reverse frequently about every quarter turn. 18.Cut the thread until the die is fully down the length to be threaded. 19.Increase the depth of cut gradually by adjusting the outer screws. 	 Standards(How well): Blank size checked. Chamfer made at the end of the rod checked. Selection of the die and die handle checked. Die on die handle set. Die reversed after every quarter turn checked. 	

Task 11: Perform external thread using threading dies.

- Screws on the die handle should be checked before starting to cut thread.
- Too much depth of cut at one time will spoil the threads. It can also spoil the die.
- Clean the die frequently to prevent the chips from clogging and spoiling the thread.
- Keep the die handle in right angle with the blank size.

	Performance Steps	Terminal Performance	Related Technical		
	renormance steps	Objectives		Knowledge	
1.	Obtain the required drawing.	Condition (Given):-	\succ	Introduction to wire/cable	
2.	Study the drawing.			joint	
3.	Obtain the required tools.	Workshop	\succ	Types of joint	
4.	Obtain the required wire/cable	Drawing	\succ	Measured of joint	
	piece.	Wire/cable	\succ	Technique of insulation	
5.	Measure and mark the			remove from wire/cable	
	wire/cable piece according to		\triangleright	Safety precautions	
	the drawing.				
6.	Cut the insulation of wire/cable	Task (What):-			
	by electrification knife/cutting				
	pliers/wire stripper.	Perform cable/wire Joint			
7.	Remove the insulation of	(straight, T- Joint,			
	wire/cable by pliers/wire	married. brittamia).			
	stripper.				
8.	Over lap the stripping parts of				
	wire/cable each other.				
9.	Twist the wire/cable each other	Standard (How wen):-			
	slowly and carefully by pliers.	Cable jointed			
10	Restore the tools/material.	Measurement performed.			
11	Clean the work place.				
	-				

Tools /Equipment:

Safety:

• Don't scratch on wire

Task: 13 Make wire/cable eyelet.

Performance Steps	Terminal Performance	Related Technical
i entimance steps	Objectives	Knowledge
 Obtain the required drawing. Study the drawing carefully. 	Condition (Given):-	Introduction to eyelet and it's uses
 Obtain the required tools. Obtain the required work piece wire/cable. Mark the wire/cable piece 	Workshop Work piece (wire/cable) Drawing	 Method of twisting Safety precautions
according to the drawing measurement.		
6. Cut the insulation of mark wire/cable by knife/cutting pliers/wire stripper.	Task (What):-	
 Remove the insulation of wire/cable by pliers/wire stripper. 	Make wire/cable eyelet.	
8. Twist the stripping parts of wire/cable by long nose pliers carefully.	<u>Standard (How well</u>):- Wire/cable eyelet made.	
9. Check the eyelet hole inserting screw.		
10. Restore the tools/material.		
11. Clean the work place.		

Tools /Equipment:

Safety:

• Don't scathe on wire, do slowly.

	Performance steps	Terminal Performance Objectives	Related Technical Knowledge
1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11	Obtain workshop drawing Obtain work piece material Check rough dimension and file out one side (marrow) plane as a reference plane Mark a layout for necessary dimension to saw Punch dots on marking lines Drill holes to get internal radius R7mm Drill chain holes to cut out unnecessary metal Remove stock material by chiseling the webs Maintain the thickness of 15mm with correct flatness and square ness in geometrical tolerances Drill a hole Ø8,5mm for M10 thread Make diamond surface on the drill surface	Objectives Condition (Given): Venire caliper with fully equipped mechanical workshop. Tasks (What): Manufacture a C - clamp Standards(How well): Marking layout line checked Chain drilling checked Flatness and square ness checked Straightness of M10 thread checked	Knowledge Introduction to C- clamp Manufacturing procedure Safety precaution
12	Make radius of R12 and R7.5 on two corners as per given drawing Chamfer and finish the work piece	Dimensions in tolerances checked	
14	Check final measurements		

Task 14 Manufacture a C – Clamp (Project work)

Safety:

• Refer the tasks drilling, sawing, thread cutting.

Module Code: M1

Module: Basic Civil Works

Description

This module is designed to equip trainees with the knowledge and skills on various civil works and components of micro hydro technology as a specialized module. This course especially, deals with preparing cement mixture, lay plaster, build masonry wall, fill gabion box and joining of different pipes.

Aim

This module aims to equip trainees with knowledge and skills on various civil works related with micro hydro and it's technology.

Objectives

After completion of this module the trainees will be able to:

- 1. Prepare cement mixture.
- 2. Lay plaster.
- 3. Build masonry wall.
- 4. Align/fill gabion box.
- 5. Join HDPE pipes.

Prerequisite: Basic module completed

Duration: 50 hours (10 hours theory and 40 hours practical)

- Prepare cement mortar.
- Prepare cement concrete.
- ✤ Lay/Apply concrete or plaster.
- Build stone masonry wall.
- ✤ Fill/ align gabion box.
- ✤ Join HDPE pipes.

Task No: 1 Prepare cement mortar.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition(Given):	\succ	Importance of
2.	Obtain tools and equipment.	At site		cement mortar
3.	Collect cement, sand and water		\succ	Definition of cement
4.	Finalize mixing ratio	Cement, sand and water		mortar
5.	Choose appropriate weighing	Mixer, Weighing		Water cement ratio
	equipments	machine, watertight		Calculation of
6.	Mix proportionately in a watertight	platform		mixing ratio
-	platform			Procedure
7.	Apply cement mortar in specified	<u>Task (What):</u>		Safety precaution
	purposes.	-		
8.	Record data.	Prepare cement mortar.		
		Standard (How Well):		
		Mixing ratio for		
		maintained		
		1.4 cement mortars		
		maintained for all		
		masonry works in		
		contact with flowing		
		water.		
		1.6 compant mortare		
		naintained for all		
		masonry works not in		
		contact with flowing		
		water.		
		Neutral water		
		maintained.		
		Sand particle size of 4		
		min maintained.		

Task No: 2 Prepare cement concrete.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition(Given):	\succ	Importance of
2.	Obtain tools and equipment.	At site		cement concrete
3.	Collect cement, sand, aggregate and	Cement, sand, aggregate	\succ	Definition of cement
	water	and water, Mixer, Water		concrete
4.	Determine the proportion of fine	tight plate form,	\succ	Water cement ratio
	and coarse aggregate, sand, cement	Weighing machine	\succ	Calculation of
	and water.			mixing ratio
5.	Choose appropriate weighing	<u>Task (What):</u>	\succ	Procedure
	equipments		\succ	Safety precaution
6.	Determine the quantities of fine and	Prepare cement concrete.		
	coarse aggregates and sand by			
	weight	Standard (How Well):		
7.	Measure the water quantity			
	accurately after giving proper	Mixing ratio well		
	allowance for surface water present	maintained		
0	in the aggregates	Concrete mixture for		
8.	Use mechanical mixer (if possible)	structural concrete (C20		
0	for mixing.	to C25) of 1:2:3, i.e.,		
9.	Use watertight platform, if hand	1part cement, 2parts		
10	mixing is used	sand (<5mm grain size)		
10	. Do not pour water into the drum of	and 3parts of gravel		
	the mixture until all the cement and	(<40mm grain size).		
	aggregates are mixed for at least	Maintained		
11	Continue mixing until there is	Concrete mixture for		
11.	. Continue mixing until there is	other works of 1:2:5 or		
12	Clean mixer or plotform thoroughly	better with up to 40%		
12	when the next mixing commences	plums (stones <300mm		
12	Record data	diameter or 1/2 of least		
15	. Record data.	dimension to be		
		concreted)		

TaskNo: 3 Lay/apply concrete.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition(Given):	\succ	Importance of
2.	Obtain tools and equipment.			concrete laying
3.	Place concrete as nearly as possible	At site	\succ	Process of handling
	in its final position.	Cement, sand, aggregate		technique
4.	Avoid segregation of the concrete	and water Mixer,	\succ	Calculation of
	and displacement of the	Weighing machine,		mixing ratio
	reinforcement, other embedded	Watertight platform	\succ	Strength of concrete
	items or formwork.		\succ	Procedure
5.	Remove all shavings, dirt and water that are collected at the bottom	<u>Task (What):</u>		Safety precaution
	before concrete is placed	Lay/Apply concrete.		
6.	Start placing at the lower end of the			
	surface to avoid decompaction of concrete on a horizontal surface.	Standard (How Well):		
7.	Do not place concrete during rain	Mixing ratio well		
8.	Do not disturb the surface, after the	maintained concrete		
	concrete has been placed.	mixture for Structural		
9.	Compact (if possible by vibrator)	concrete (C20 to C25)		
	the surface to a maximum	shall be 1:2:3, i.e., 1part		
	subsidence without segregation.	cement, 2parts sand		
10	Cure all concrete for 7 days	(<5mm grain size) and		
	immediately after placement or	3parts of gravel (<40mm		
	until covered by further concrete	grain size). Maintained.		
	whichever is shorter.	Concrete mixture for		
11.	Record data.	other works shall be		
		1:3:5 or better with up to		
		40% plums (stones		
		<300mm diameter or 1/3		
		of least dimension to be		
		concreted).		
		Compressive strength		
		maintained.		

Task No: 4 Build stone masonry wall.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition(Given):	\succ	Importance of stone
2.	Obtain tools and equipment.	At site		masonry
3.	Collect clean, hard, unweathered	Cement, sand, aggregate	≻	Types of stone
	stone	and water Mixer,		masonry
4.	Prepare foundation-surface by	Weighing machine,	\triangleright	Requirement of good
	laying large selected stones with	Watertight platform,		stones
	bound stones with their largest dimension in the horizontal plane	Stones, Hammer, Chisel		Process of handling technique
5.	Fill spaces between large stones	<u>Task (What):</u>	\triangleright	Calculation of
6	Prenare cement mortar as	Duild stone mesoner		Concept of tensile
0.	mentioned in earlier section	Build stone masonry.		and shear strength
7	Chisel and hammer the bond stones		Δ	Procedure
7. 8	Clean exposed stones on faces by	<u>Standard (How Well):</u>		Safety precaution
0.	wire brushing			Safety precaution
9	Flush point the mortar	length of any stone not		
10	Provide ween holes as per drawing	exceeded three times its		
10	to drive moisture/water form the	height and breadth not		
	back filling	exceed 150mm of		
11	Record data	greater than three ³ / ₄ th		
		of thickness of the wall.		
		Crusning strength of		
		Stones maintained.		
		shoer stresses		
		siteal stresses		
		mannamed.		

Task No: 5 Fill/ align gabion box.

	Performance steps	Terminal Performance		Related Technical
	_	Objective		Knowledge
1.	Receive instruction.	Condition(Given):	٨	Importance of gabion
2.	Obtain tools and equipment.	At site		filling
3.	Collect clean, hard, sound,	Cement, sand, aggregate	\succ	Process of filling
	unweathered stones and angular rock	and water Mixer,		technique
	fragments or boulders	Weighing machine,	\succ	Calculation of quantity
4.	Place the crates, stretch to their full	Watertight platform,		of stone to be filled
	dimension and securely peg to the	Stones, Hammer, Chisel	\triangleright	Idea of gravitational
	ground or wired to adjacent gabions			force
	before filling	<u>Task (What):</u>	≻	Safety precaution
5.	Anchor gabions at one end or side and			
	stretch from the opposite end or side by	Fill/align gabion box		
	inserting temporary bars and levering			
	them forward,	Standard (How Well):		
6.	Stretch the top and bottom by	Length of any stone not		
	tensioning with the wires attached to an	exceeded three times its		
_	anchorage.	height and breadth not		
7.	Place individual stones into the gabion	exceeded 150mm of		
	by hand in courses in such a manner	greater than three ³ / ₄ th of		
	that the stones are bedded on each	thickness of the wall		
	other and bonded as in dry random	The specialized gravity of		
0	rubble masonry.	the stone not less than		
8.	Fill all Im deep gabions three equal	2.50 and the stones not		
	layers and 0.5m deep gabions in two	absorbed water more than		
0	equal layers.	5 percent when tested as		
9.	and across the gabions	per IS:1124.		
10	Fix the ties to the bottom of the units	The vertical corners kept		
10	prior to filling	square and to full		
11	Over filled the gabion boxes and	dimension by inserting a		
11	mattress compartments by 50mm	steel bar of at least 20 mm		
	above their tops to allow for	diameter at each vertical		
	subsequent settlement	corner, maintained it in		
12	Stretch the lids to fit the sides exactly	the correct final position		
12	by means of a suitable tool	throughout the filling		
13	Secure corners temporarily.	process, and removing it		
14	Record data.	when the crate is full.		
		Bracing wires spaced		
		horizontally along and		
		across the gabions at		
		distances not greater than		
1		U.55m		
		The gabion wire tested for		
		mass, uniformity and		
		addression of zinc coating		
		and tensile strength of the		
		wire itself		
Task No: 6 Join HDPE pipes.

	Performance steps	Terminal Performance	Related Technical
		Objective	Knowledge
1.	Receive instruction	Condition(Given):	Importance of pipe
2.	Collect materials	Hot plate, Burner, Teflon	joints
3.	Heat hot plate with burner or	paper, Thermo chalk	Concepts on joining
	use electrical heating plate.	Layout drawings,	Techniques
4.	Cover hot plate with Teflon	Excavation tool, Hammer,	> Safety precaution
	paper.	Chisel, Field	Concept on cutting
5.	Mark with thermo chalk to		techniques.
	know the heating temperature	Task (What):	Concept on Safety
6.	Put the pipes to be joined in two	Join HDPE pipes	precautions
	sides of the hot plate	Standard (How Well):	_
7.	Join the pipe as per the	Pipes are joint with	
	instruction.	minimum burr and no	
8.	Check if any leakage.	leakage from joints	
		leakage nom joints.	

Module Code: M 2

Module: Basic Electrical Works

Description

This module is designed to equip trainees with the knowledge and skills on various electrical works and components of micro hydro technology as a specialized module. This course especially, deals with concept of electricity, designing of house wiring, installation and designing of single phase and three phase wiring and installation of earthing system.

Aim

This module aims to equip trainees with knowledge and skills on various electrical works related with micro hydro and its technology.

Objectives

After completion of this module the trainees will be able to:

- 1. Interpretation concept of electricity
- 2. Design house wiring
- 3. Installation single phase & three phase wiring
- 4. Perform earthing

Prerequisite: Basic module completed

Duration: 200 hours

Module Structure (M 2)

S.N.	Code	Sub-modules	Nature	Total	Full
				hours	marks
1	SM 2.1	Concept of Electricity	T+P		
2	SM 2.2	House Wiring System	T+P		
3	SM 2.3	Single-phase Wiring	T+P	200	200
4	SM 2.4	Three-phase Wiring	T+P		
5	SM2.5	Earthing System	T+P		
	Total				200

Module Code: M2 Sub module Code: SM2.1 Sub module: Concept of Electricity

Description

This course is designed to help trainees to provide Concept of Electricity on as a sub module. This sub module especially intends to provide knowledge on basic concept of electricity and provides knowledge and skills on operation of various electrical meters and identification of sign and symbols used in electrical system.

Prerequisite: Basic module completed

Duration: 40 hours (8 hours theory and 32 hours practical)

Competencies

- Explain basic concepts of electricity
- Operate Multi meter/ Voltmeter/Ammeter/Frequency meter/Wattmeter/PF meter / Energy meters.
- ✤ Identify symbols used in electrical system

Task No: 1 Explain basic concept of Electricity.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Define electricity.	Condition (Given):	\triangleright	Definition of
2.	Enlist importance of electricity.	Books, handouts with		electricity
3.	Enlist sources of electricity.	some numerical with unit	\succ	Importance of
4.	Describe all the basic quantities.	conversions and power		electricity
5.	Derive the related units and	equations.	\succ	Principle of AC /DC,
	equations			Single phase, three
6.	Solve the numerical problems with	Task (What):		phase
	the related units.	Explain resistance,	\succ	Principle of ohms
7.	Record data.	voltage, current, frequency		law and power and
		and power		energy equations.
			\succ	Definition of series
		Standard (How Well):		and parallel
		The units are identified		resistance
		and well defined,	\succ	Definition of
		numerical associated with		Resistance,
		the topics are solved.		inductance,
				capacitance, voltage,
				Current, Frequency,
				and Power and
				energy
			\succ	Concept of electrical
				units and notations.

Task No: 2 Operate Multi meter/ Voltmeter/Ammeter/Frequency meter/Wattmeter/PF meter / Energy meters.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition (Given):	\checkmark	Introduction of units
2.	Study instruments catalogue	Ammeters, Voltmeters,		and meter
	carefully.	Frequency meters,	\triangleright	Importance of meter
3.	Obtain required tools, equipment	Wattmeter, Energy meter,	\triangleright	Calibration of setting
	and materials.	Multimeters, Catalogues	\triangleright	Handling precaution
4.	Connect to the load.	and instruction manual,	\triangleright	Reading the output
5.	Measure the electrical quantities.	Practical Lab		displayed by the
6.	Record the readings with			specified meter
	appropriate meters.	Task (What):	\triangleright	Analysis of reading
7.	Repeat the readings with different	Operate Multi meter/	\triangleright	Safety precautions
	inputs.	Voltmeter/ Ammeter/		
8.	Recheck each reading with	Frequency		
	multimeters.	meter/Wattmeter/PF meter		
9.	Analyze the readings.	Energy meters		
10.	Record data.			
		Measure resistance,		
		voltage, current,		
		frequency, power, power		
		factors		
		Standard (How Well):		
		All the meters identified.		
		All the meters operated.		
		The resistance, voltage,		
		current, frequency, power,		
		power factors are measured		
		as per norms.		

	Performance steps	Terminal Performance Objective		Related Technical Knowledge
1.	Receive instruction.	Condition (Given):	\triangleright	Concept of (AC and
2.	Study the symbols carefully.	Standardized drawings,		DC, types of system,
3.	Obtain electrical template.	drawings kits, drawing		and associated
4.	Trace them into the drawings as per	papers, Classroom.		electronic
	given instructions.			components
5.	Align if required.	Task (What):		capacitor, inductor
6.	Decorate the symbol in front of the	Interpret and sketch		diode etc)
	classroom.	electrical symbols.	\succ	Importance of
7.	Record data.			electrical systems
		Standard (How Well):	\succ	Symbols of
		Standard electrical		accessories and
		symbols interpreted ad		fittings
		sketched.	\succ	Drawing
				interpretation

Task No: 3 Interpret/sketch symbols used in electrical systems.

Module Code: M2 Sub module Code: SM2.2 Sub module: House Wiring System

Description

This course is designed to help trainees to provide knowledge and skills on House Wiring System as a sub module. This sub module especially, intends to provide knowledge and skills on laying out dimension, estimating wiring materials and performing wiring.

Prerequisite: Basic module completed

Duration: 50 hours (10 hours theory and 40 hours practical)

Competencies

- ✤ Layout the dimension
- ✤ Estimate wiring material
- Perform wiring

Task No: 1 Layout the dimension.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition (Given):	$\boldsymbol{\lambda}$	Concept of various
2.	Obtain drawing paper	Drawing paper, drawing		types of wirings
3.	Fix into the drawing board	board, tape, scale, eraser,	\triangleright	Types of diagram
4.	Margin the drawing paper	lid pencil, template, Class	\triangleright	Introduction of
5.	Align if required	room,		design and feature of
6.	Trace the design as per instruction.			drawings
7.	Prepare the drawings with standard	Task (What):	\triangleright	Importance of
	symbols and appropriate scales.	Layout the dimension		drawings and scale
8.	Record data.		\triangleright	Definitions of
		Standard (How well):		technical
		The dimension laid out		terminology
		and drawing prepared with		associated house
		standard symbols and		wiring design
		appropriate scales.	\triangleright	Interpretation of
				electrical wiring
				diagrams and
				symbols

Task Analysis

Task No: 2 Estimate wiring materials.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition (Given):	\checkmark	Technical
2.	Obtain required tools and	P.V.C cables, switches,		specializedations of
	equipment.	holders, MCB, wiring		cables, switch,
3.	Obtain required materials.	accessories etc,		bulbs, holders,
4.	Identify the items for wiring	Catalogues, Class room		MCB, fuses
	materials.	_	\succ	Working principles,
5.	Refer catalogue and depending			functions and types
	upon the types of the wiring, select	Task (What):		available standard
	the appropriate wiring materials.	Estimate of wiring		ratings of wiring
6.	Follow the layout design.	materials		materials.
7.	Estimate the quantity of items from		\succ	Calculation of
	design.	Standard (How well):		current and power.
8.	Prepare the bill of quantities and	Wiring materials selected	\succ	Familiarization with
	estimate the cost.	of standard quality and		the market price
9.	Record data.	appropriate ratings and		-
		bill of quantities is		
		prepared.		

Task No: 3 Perform wiring on wooden board.

Performance steps	Terminal Performance	Related Technical
_	Objective	Knowledge
1. Receive instruction.	Condition (Given):	 Electrical wiring
2. Obtain required tools, equipment	Wooden ply board, wire,	diagram and symbol
and materials.	MCB, switch, bulb holder	Technical terms
3. Draw the wiring.	connection, screws, wiring	associate the wiring
4. Mark on the board.	electrical tools, insulation	Working principles,
5. Fix the items through the screws.	tape, junction box, listy	functions and types
6. Wires insert in respective position	Class room	of wiring
7. Insulate the connection.		Methods of testing
8. Verify the circuits.	Task (What):	wire/bulb
9. Supply electricity in the circuit.	Perform wiring on wood	Concept of electrical
10. Test the performance.	board.	circuit testing
11. Record data.		procedure
	Standard (How Well):	Trouble shooting
	Wiring on wooden ply	techniques
	board performed and	 Safety precautions
	desired performance	
	tested.	

Module Code: M2 Sub module Code: SM2.3 Sub module: Single-phase Wiring

Description

This course is designed to help trainees to provide knowledge and skills on Single- phase Wiring as a sub module. This sub module especially, intends to provide knowledge and skills on the installation of main switch, junction box, one way two way switch, sockets and meter box as well as connection of wiring accessories.

Prerequisite: Basic module completed

Duration: 70 hours (14 hours theory and 56 hours practical)

Competencies

- ✤ Install main switch.
- ✤ Install junction box.
- ✤ Install one way, two-way switch.
- Install five pin /three pin/two pin socket.
- Connect electrical/ accessories.
- ✤ Install meter box (energy meters).

Task No: 1 Install main switch.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition (Given):	\triangleright	Interpretation of
2.	Obtain required tools, equipment	Main switch, wiring		service manuals
	and materials.	layout drawings, wiring	\succ	Technical
3.	Choose for ease access	performing location.		specializedation of
4.	Install at well ventilated room and			main switch.
	at dry place	Task (What):	\succ	Operating principles,
5.	Erect at 1.25m above the floor level	Test and install main		functions and types
6.	Connect to the incoming and	switch		of main switch
	outgoing conductor		\triangleright	Main switch testing
7.	Outer casing be weather proof			process
8.	Give the supply, check for	Standard (How Well):	\triangleright	Trouble shooting
	operation	Main switch tested and		techniques
9.	Clear identification of phase and	installed as per	\succ	Safety precaution.
	neutral wire	requirements.		
10	Incorporate danger notice plate for			
	safety precaution.			
11	. Record data.			

٠

Task No: 2 Install one way switch/two way switch/ fuse indicator.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition (Given):	\triangleright	Importance and
2.	Obtain required tools and	One way switch/two way		functions of switches
	equipment.	switch/ fuse indicator,	\triangleright	Properties and types
3.	Obtain the materials as per	wiring layout diagram,		of switches and
	appropriate ratings and size as	Wiring location (field)		fuses
	specified in the design-drawing		\triangleright	Calculations of
	layout.			ratings.
4.	Measure the dimension at place	Task (What):	\triangleright	Familiarization with
	where it has to be fixed.	Install ant test one way/		electrical wiring
5.	Facilitate the casing capping listic	two way switch with fuse		diagram and
6.	Install fuse in the live line.	indicator		symbols
7.	Install indicator lamp.		\triangleright	Trouble shooting
8.	Connect bulb wired from switch	Standard (How well):		techniques
	and neutral.	The one way/ two way	\triangleright	Safety precaution
	<u>For two way switch</u>	switch with fuse and		
9.	Connect live wire in mid position	indicators installed		
	of two way switch.	at appropriate place as		
10	Place the upper and lower point of	required and tested.		
	both switch is in respective points.			
11	Connect the wire from mid position			
	of two way switch to the bulb.			
12	Check the insulation and verify			
	connections.			
13	Perform test.			
14	Record data.			

Task No: 3 Install junction box.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition (Given):	\triangleright	Importance of
2.	Obtain required tools and	Wires distribute through		Junction box
	equipment.	junction box, wiring	\triangleright	Familiarization with
3.	Obtain the junction box.	layout, location for		electrical wiring
4.	Read the layout drawing.	wiring		diagram and symbols
5.	Erect the junction box at	_	\triangleright	Procedure
	appropriate position.	Task (What):	\triangleright	Safety precaution
6.	Arrange distinctly the phase loop	Install junction box.		
	and neutral loop.	-		
7.	Make earthing of the junction box	Standard (How Well):		
	if it is of metal.	Junction box installed and		
8.	Record data.	common connection		
		taken from junction box.		
		_		

Task Analysis

Task No: 4 Install two pin/three pin /five pin socket.

	Performance steps	Terminal Performance Objective		Related Technical Knowledge
1.	Receive instruction.	Condition (Given):	٧	Importance and
2.	Obtain required tools, equipment	Five pin /three pin/two pin		functions of five
	and materials.	sockets with accessories,		pin/three pin and
3.	Read the wiring layout and control	wiring layout drawing,		two pin power
	diagram.	wiring location.		sockets.
4.	Choose for ease access.		\succ	Ratings of various
5.	Arrange the materials.			switches.
6.	Install at dry places.	Task(What):	\succ	Identification of
7.	Connect the phase, neutral and	Install two pin/three pin		phase, neutral, earth
	earthed in specified point.	/five pin socket.		and testing of
8.	Give the supply, check for			connection
	operation.	Standard(How Well):	\succ	Familiarization with
9.	Record data.	The various sockets are		electrical wiring
		installed and connected in		diagram and symbol
		proper position as	\succ	Trouble shooting
		required.		techniques
			\succ	Safety precaution

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition (Given):	\checkmark	Importance and
2.	Obtain required tools, equipment	MCB, Fuses and		functions of MCB,
	and materials.	accessories, wiring layout,		fuses and various
3.	Arrange the required materials for	wiring location		accessories.
	connection.		\succ	Importance of users
4.	Screw the box, switch plate box.	Task (What):		load demand
5.	Use of drill machine for ease.	Connect the	\triangleright	Ratings of various
6.	Insulate the connection through	electrical/wiring		accessories.
	insulation tape.	accessories	\succ	Familiarization with
7.	Solder the connection.			electrical wiring
8.	Adopt the standard practice.	Standard (How Well):		diagram and symbol
9.	Test the connection to be assured.	The accessories are well	\triangleright	Trouble shooting
10	. Record data.	connected as per standard		techniques
		practice.	\succ	Safety precaution

Task No: 5 Connect electrical/ accessories.

Task Analysis

Task No: 6 Install single phase energy meters.

Performance steps	Terminal Performance	Related Technical
	Objective	Knowledge
1. Receive instruction.	Condition (Given):	Operational
2. Obtain required tools, equipment	Single-phase energy	principle of energy
and materials.	meters, wiring layout,	meters
3. Arrange the required materials for	wiring location.	Types and ratings of
connection.		energy meters.
4. Screw the box, switch plate box.	Task (What):	Familiarization with
5. Use of drill machine for ease.	Install single phase energy	electrical wiring
6. Insulate the connection through	meter	diagram and symbol
insulation tape.		Trouble shooting
7. Solder the connection.	Standard (How Well):	techniques
8. Adopt the standard practice.	Single phase energy meter	Safety precaution
9. Test the connection to be assured.	installed and tested.	
10. Record data.		

Module Code: M2 Sub module Code: SM2.4 Sub module: Three-phase Wiring

Description

This course is designed to help trainees to provide knowledge and skills on Three-phase Wiring as a sub module. This sub module especially, intends to provide knowledge and skills on designing of three-phase wiring and installation of three phase wiring.

Prerequisite: Basic module completed

Duration: 20 hours (4 hours theory and 16 hours practical)

Competencies

- ✤ Design three-phase wiring.
- ✤ Install/control three phase wiring with control panel as per designed.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition (Given):	\triangleright	Concept of three phase
2.	Obtain required tools, equipment	Drawing paper, standard		wirings
	and materials.	manual, cable catalogues,	≻	Importance of color
3.	Refer catalogue of different	wiring accessories		codes.
	products of different company.	catalogues, scale, pencil,	\triangleright	Concept of power
4.	Prepare layout drawing (Line/	eraser, calculator,		cables, types and
	Control).	template, class room		ratings
5.	Choose the proper specializedations		\succ	Calculation associated
	of the wiring materials.	<u>Task (What):</u>		with three-phase
6.	Estimate the wiring materials.			power, current and
7.	Prepare bill of quantities and	Design three phase		power factor.
	costing.	wiring.		Importance of marking
8.	Record data.		~	and layout
		<u>Standard (How):</u>		Concepts of types of
				customers and nature of
				load demand, cost
		Three phase wiring	K	benefit analysis,
		designed, the layout		Concepts of motor,
		drawing prepared.		DOL, forward, reverse,
			~	star/delta configuration
				Definitions of
				l'echnical terms
				associated three phase
			~	System Testing procedure of
				resting procedure of
			Δ	Trouble shooting
				techniques
				Safety precaution
			1	Sarcey precaution
				Testing procedure of power circuit. Trouble shooting techniques. Safety precaution

Task No: 1 Design three-phase wiring.

	Task No:	2 Install/control	l three phase	wiring with	control panel.
--	----------	-------------------	---------------	-------------	----------------

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition (Given):	A	Electrical wiring
2.	Obtain required tools, equipment	Workshop, 3 phase		diagram and
	and materials.	supply, panel board,		symbols
3.	Fabricate/make panel board ready	associated equipments,	\triangleright	Importance &
4.	Read the design layout and the	cables, meters, wiring		introduction of types
	control diagram.	design layout, standard		and accessories
5.	Fix the listic /pipe as per ease	earthing, soldering items,		associated with three
6.	Layout the cables of appropriate	screw drivers, crimp tools,		phase electrical
	size and connect them accordingly	clamp meters.		system and wiring
	as per design.		\triangleright	Description of
7.	Recheck the electrical system to	Task (What):		technical terms
	conform.			associated with
8.	Check operation with supply.	Install/control three phase		electrical systems
9.	Switch on the switches to check the	wiring with control panel.	\triangleright	Electrical circuit
	operation.			testing procedure
10	. Fix MCCB for safety.	Standard (How well):	\triangleright	Operating principles
11	. Perform earthing as per standard.			and functions of
12	. Record data.	Three phase wiring		panel board, three
		performed as per design		phase energy meters,
		and drawing and		watt meters, soft
		performance tested.		starters
			\triangleright	Calculation of
				power, current and
				power factor.
			۶	Safety precautions

Module Code: M2 Sub module Code: SM2.5 Sub module: Earthing System

Description

This course is designed to help trainees to provide knowledge and skills on Earthing System as a sub module. This sub module especially, intends to provide knowledge and skills on performing of body earthing of the plant and equipments and appliances and performing system earthing.

Prerequisite: Basic module completed

Duration: 20 hours (4 hours theory and 16 hours practical)

Competencies

- Perform body earthing of the plant equipments and appliances.
- Perform system earthing (Neutral earthing).

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition(Given):	\checkmark	Definition of
2.	Obtain required tools, equipment	Metal enclosure,		earthing.
	and materials.	transformer, generator,	\succ	Concepts on types of
3.	Arrange the required materials	panel board, earth		earthing
4.	Choose appropriate location for	electrode and wire, black	\succ	Concept on earthing
	earthing	coal, salt and copper plate,		procedure and
5.	Excavate the ground.	earthing location		earthing standards.
6.	Follow earthing procedure and		\triangleright	Measurement of
	standard.			earth resistance.
7.	Connect to the earth wire to the	Task(What):	\triangleright	Safety precautions
	plate with brass nut bolt.	Perform body earthing of		
8.	Lay the GI pipe for drain salt water.	the plant equipments and		
9.	Measure the earth resistance.	appliances.		
10	. Record data.	Standard (How Well):		
		The metallic part of the		
		equipment earthed		
		properly and resistance		
		measured (resistance		
		should be below 10 ohms)		

Task No: 1 Perform body earthing of the plant equipments and appliances.

Task Analysis

Task No:	2 Perform	systems earthing	(Neutral	earthing).
		by seems car thing	(1) Cuttu	cui timig,

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition (Given):	\checkmark	Definition of
2.	Obtain required tools, equipment	Transformer, generator,		earthing
	and materials.	earth electrode and wire,	\triangleright	Importance of
3.	Arrange the required materials	black coal, salt and,		system earthing
4.	Choose appropriate location for	earthing location	\succ	Types of earthing
	earthing.		\succ	Earthing procedure
5.	Excavate the ground.	Task(What):		and earthing
6.	Follow earthing procedure and	Perform system earthing		standards
	standard for neutral earthing.	(Neutral earthing)	\succ	Measurement of
7.	Connect to the earth wire to the			earth resistance
	plate with brass nut bolt.	Standard (How Well):	\succ	Concept of safety
8.	Lay the GI pipe for drain salt water.	System earthing (Neutral		precautions
9.	Measure the earth resistance.	earthing) performed as per		
10	. Record data.	requirements.		

Module Code: M3

Module: Electro Mechanical Installation Works

Description

This module is designed to equip trainees with the knowledge and skills on Electro Mechanical Installation as a specialized module. This module intends to provide skill and knowledge on alignment and erection of base frame, installation of turbine & generators, alignment of pulley, belts & couplings, installation of ELC control panel and erection of ballast tank and heater.

Aim

This module aims to equip trainees with knowledge and skills micro hydro necessary to be a micro hydro technician.

Objectives

After completion of this module the trainees will be able to:

- 1. Align and erect base frame
- 2. Install turbine and generator
- 3. Align pulley, belts and couplings
- 4. Install ELC control panel
- 5. Erect ballast tank and ballast heater

Prerequisite: Basic module completed

Duration: 50 hours (10 hours theory and 40 hours practical)

Competencies

- ✤ Align base frame
- ✤ Install turbine & generator
- ✤ Align pulley & belts
- ✤ Align couplings
- ✤ Install ELC control panel
- Erect ballast tank

Task No: 1	Align and erect base frame.
------------	-----------------------------

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive the necessary instruction	Condition (Given):	\checkmark	Importance and
2.	Collect the required tools,	Base frame, spirit level,		purpose of base
	equipment and materials.	level pipe, thread, Power		frame
3.	Select the penstock route via fore	house detail layout	\succ	Levelling of the base
	bay.	drawings, measuring tape,		frame.
4.	Excavate the ground for machine	wooden frame, anchor	\succ	Measurement with
	foundation.	rod,		spirit level, level
5.	Place the wooden frame for	Concrete mixture		pipes.
	foundations under the base frame		\succ	Interpretation of
6.	Erect anchor rod as per given	Task (What):		layout drawings
	instructions	Align and erect base		
7.	Place the base frame in level	frame		
8.	Fill the concrete mixture			
9.	Cure the structure for gaining	Standard (How Well):		
	strength.	Base frame erected		
10	. Record data.	properly as per given		
		layout drawing		

Task Analysis

Task No: 2 Install turbines & generator.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive the necessary instruction	Condition (Given):	$\mathbf{\Lambda}$	Importance and
2.	Collect the required tools,	Founded Base frame, sprit		purpose of installing
	equipment and materials.	level, level pipe, thread,		turbine & generator
3.	Obtain the design drawing	measuring tape, wooden	\triangleright	Familiarization with
4.	Layout the dimension as per	frame, Design layout of		turbine and
	drawing	Turbine Generator set		generator parts
5.	Assemble the turbine housing and		\triangleright	Concept of drawing
	its components	Task (What):		dimensions and
6.	Place the Generator on the base	Install turbine & generator		angles
	frame		\triangleright	Assembling of
7.	Fix it in the base frame as per given	Standard (How Well):		turbine housing and
	instruction	The turbine & generator		various components
8.	Fix other accessories	installed accurately.	\triangleright	Concept of nut and
9.	Check the alignment			bolt fixing
10	Record data.		\triangleright	Procedure
			\triangleright	Safety precaution

Task No: 3 Align pulley and belts.

 Receive the necessary instruction. Collect the required tools, equipment and materials. Insert pulley into the shaft of associated equipments and fix it as per given instruction. Observe the pulley through the key. Fit belts on the pulley Adjust belt tensioning Check the alignment and belt tension Record data. Condition (Given): Pulleys, Belts, File (round & flat), sprit level, level pipe, thread, measuring tape Task (What): Align pulley and belts Standard (How Well): Pulley and belts aligned properly. The tension in the belt shall be not more than 2%. Mitowredge Importance and purpose of alignment of pulley and belts Types of drive system Properties and application of various types of belts Concept of pulley alignment, belt fixing and tensioning procedure 	Performance steps	Terminal Performance Objective	Related Technical Knowledge
Mechanical power from turbine to generator transformed by using pulley and belt.	 Receive the necessary instruction. Collect the required tools, equipment and materials. Insert pulley into the shaft of associated equipments and fix it as per given instruction. Observe the pulley through the key. Fit belts on the pulley Adjust belt tensioning Check the alignment and belt tension Record data. 	ObjectiveCondition (Given):Pulleys, Belts, File (round & flat), sprit level, level pipe, thread, measuring tapeTask (What):Align pulley and beltsStandard (How Well):Pulley and belts aligned properly.The tension in the belt shall be not more than 2%.Mechanical power from turbine to generator transformed by using pulley and belt.	 Knowledge Importance and purpose of alignment of pulley and belts Types of drive system Properties and application of various types of belts Concept of pulley alignment, belt fixing and tensioning Speed checking procedure Safety precaution

Task Analysis

Task No: 4 Align couplings.

	Performance steps	Terminal Performance Objective		Related Technical Knowledge
1.	Receive the necessary instruction	Condition (Given):		Importance and
2.	Collect the required tools,	Coupling, dial gauge,		purpose of coupling
	equipment and materials.	spirit level, shaft for	\triangleright	Concept of angular
3.	Obtain the layout drawing	fitting, lab or test field,		and positional
4.	Insert coupling into the shaft of	coupling catalogue, layout		misalignment
	associated equipments	drawing	\triangleright	Introduction of
5.	Align them as per given			various types of
	instructions.	<u>Task (What):</u>		coupling and their
6.	Check for the angular and	Align coupling		features.
	positional misalignment.		\triangleright	Measurement with
7.	Record data.	Standard (How Well):		dial gauge
		Couplings are aligned	\triangleright	Procedure
		properly.	\triangleright	Safety precaution
		The allowable angular		
		misalignment is 0.5 ⁰ and		
		positional misalignment is		
		0.25 mm for flexible		
		coupling.		

Task No: 5 Install ELC control panel.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive the necessary instruction	Condition (Given):	\checkmark	Introduction of ELC
2.	Collect the required tools,	ELC control panel, wiring	\succ	Purpose and
	equipment and materials.	diagram, Armored cable,		functions of
3.	Place the ELC panel in proper	body earthing, cable shoes		installing ELC
	location with sufficient space for		\triangleright	Concept of wiring
	ventilation.	Task (What):		diagram
4.	Install the ELC closer to the	Install ELC panel	\succ	Concept of
	generator	_		insulating &
5.	Insulate the armored cables	Standard (How Well):		trimming armored
6.	Trim the armored cables	ELC panel board installed		cable
7.	Join the cable shoes	properly.	\succ	Concept of joining
8.	Connect the cable to both control			cable shoes
	panel and generator and ballast tank		\succ	Concept of
9.	Record data.			connecting the
				cables in both
				control panel and
				generator
			\succ	Concept on MH
				reference standard.
			\succ	Procedure
			\succ	Safety precaution

Task Analysis

Task No: 6 Erect ballast tank and ballast heater.

Performance steps	Terminal Performance	Related Technical
	Objective	Knowledge
1. Receive the necessary instruction	Condition (Given):	Concept and purpose
2. Collect the required tools,	Ballast heaters, Ballast	of the ballast tank
equipment and materials.	tank, Heaters Wrench,	and ballast heaters
3. Make certain height base level	Cable shoes, multimeter	Concept of heater
4. Fit the heaters into the tank		fixing
5. Tighten through the wrench		 Acquaintance of
6. Join the armoured cables through	Task (What):	earthing
cable shoes	Erect ballast tank &	➤ Concept of
7. Set earthing of ballast tank.	ballast heater	measuring heater
8. Balance the phases equally		resistance
9. Fit Inlet and outlet pipe		Concept of inserting
10. Fill the water into the tank	Standard (How Well):	water level indicator
11. Insert water level indicator to avoid	Ballast tank & ballast	Procedure
short circuit or heater burnout.	heater erected properly.	Safety precaution
12. Record data.		

Module Code: M4

Module: Arc Welding

Description

This module is designed to equip trainees with the skills and knowledge on Shielded Metal Arc Welding (SMAW) as a specialized module related to the occupation. This module intends to provide knowledge and skills on welding machine, striking, surface welding, edge joints, butt joint, and corner joint in various positions such as flat position, horizontal position, vertical position and overhead position.

Aim

This module aims to equip trainees with knowledge and skills on arc welding to be a micro hydro technician.

Objectives

After completion of this module the trainees will be able to:

- 1. Perform arc welding on various positions and methods.
- 2. Repair and maintain ferrous components of the MH plant.

Prerequisite: Basic module completed

Duration: 120 hours (24 hours theory and 96 hours practical)

Competencies

- 1. Familiarize with of welding machine.
- 2. Perform striking/ maintaining arc.
- 3. Perform surface welding in flat position.
- 4. Weld edge joint in flat position.
- 5. Weld lap joint in flat position.
- 6. Weld 'T' joint in flat position.
- 7. Weld square butt in flat position.
- 8. Perform surface welding in horizontal position.
- 9. Weld square butt in horizontal position.
- 10. Perform surface welding in vertical position.
- 11. Perform fillet lap joint in vertical position.
- 12. Perform surface welding in overhead position.
- 13. Weld square butt joint in overhead position.

•

Task 1: Familiarize with welding machine.

	Performance steps	Terminal Performance Objectives		Related Technical Knowledge
1.	Observe the types of welding machine.	Condition (Given):	٨	Definition of arc welding
2.	Enlist function of welding machine.	Workshop & Site, welding machine and accessories.		Importance of arc welding.
3.	Identify welding machine and accessories			Use of arc welding machine
4.	Identify positive and negative pole (Earthing & holder)	Task (What):	۶	Function of welding machine
5. 6. 7	Describe polarity change Set ampere.	Familiarize with welding machine.	\checkmark	Types of welding machine
7. 8.	Define voltage and ampere.			
		Standard (How well):		
		Arc welding machine familiarized.		

•

Task 2: Perform striking/ maintain	ing arc.
------------------------------------	----------

	Performance steps	Terminal Performance Objectives		Related Technical Knowledge
1.	Obtain the required tools and material.	Condition (Given):	\checkmark	Concept of striking and maintaining arc
2.	Connect the power supply for	Workshop & Site, welding	\succ	Striking type and method.
	welding generator.	tools, equipment and	\succ	Identification of tools,
3.	Set the earthing supply.	materials		materials & equipment.
4.	Set the angle of electrode.		\succ	Selection of ampere
5.	Weld straight striking and			according to type and size
	maintaining the arc on	Task (What):		of electrode & base metal.
	working plate.		\succ	Selection of electrode.
6.	Check the work piece.	Perform striking and	\succ	Welding positions.
7.	Re-store the tools.	maintaining arc.	\succ	Welding procedure
8.	Clean the working area.		\succ	Electrode pre- heating.
			\succ	Type and size of electrode.
		Standard (How well):	\succ	Types of arc length.
			\succ	Types of welding machine.
		Striking/ maintaining the		(A/c, D/c, Rectifier).
		arc performed as per		
		drawing/ instruction		

- Wear goggles, apron, welding seal, Leather glove and shoes.
- Check the power connection.
- Check the ear thing connection.
- Do not touch open wire when machine is on.
- Do not keep flammable materials around the working area.

Task 3: Perform surface welding in flat position.

	Performance steps	Terminal Performance Objectives	Related Technical Knowledge
1.	Obtain the required drawing/	Condition (Given):	Welding position.
	instruction.		Identification of level.
2.	Obtain the required tools and	Workshop & Site, welding	Selection of electrode
	material.	tools, equipment and	(Type and size)
3.	Study the drawing carefully.	materials	Welding procedure
4.	Prepare the work piece in flat		Procedure of handling
	position.		wire brush and chipping
5.	Check the level of work piece.	Task (What):	hammer.
6.	Weld straight on working		Electrode pre- heating.
	plate.	Perform surface welding in	Defects of welding.
7.	Clean the slag from the work	flat position.	
	piece.		
8.	Check the work piece.		
9.	Put the number on work piece.	Standard (How well):	
10.	Re-store the tools.		
11.	Clean the working area.	Surface welding performed	
		in flat position as per	
		drawing/instruction	
		Size of welding and	
		maintained.	
		Accurate movement of	
		weld bead maintained.	

- Wear goggles, apron, welding seal, Leather glove and shoes.
- Check the power connection.
- Check the earthing connection.
- Do not touches open wire when machine is on.
- Do not keep flammable materials around the working area.

Task4: Weld edge joint in flat position.

	Performance steps	Terminal Performance Objectives	Related Technical Knowledge
1. 2.	Obtain the required drawing/ instruction. Obtain the required tools and	Condition (Given): Workshop & Site, welding	 Welding method. Concept of tack welding. Welding procedure.
3.	material. Prepare the work piece for edge	tools, equipment and materials	 Defects of welding. Edge preparation.
4.	Joint. Fix the work piece in position. Hold the electrode and weld it	Task (What).	 Ampere selection. Method of minimizing distortion
<i>6</i> .	on the work piece. Check the penetration back side	Weld edge joint in flat	 Method of electrode travel. Maintain arc length.
	of the edge joint in flat position.	position.	 Heat affected zone.
		<u>Standard (How well) :</u>	
		Edge joint welded in flat position as per drawing/instruction	
		Welding size maintained	

- Wear goggles, apron, welding seal, Leather glove and shoes.
- Check the power connection.
- Check the earthing connection.
- Do not touch open wire when machine is on.
- Do not keep flammable materials around the working area.

Task 5: Weld lap joint in flat position.

	Performance steps	Terminal Performance Objectives		Related Technical Knowledge
1.	Obtain the required drawing/	Condition (Given):	\triangleright	Concept of lap welding
	instruction.		\triangleright	Paralleled gap and
2.	Obtain the required tools and	Workshop & Site,		penetration method.
	material.	welding tools, equipment	\triangleright	Welding positions.
3.	Fix the work piece in position	and materials	\triangleright	Welding size and bead
	with tack welding in lap joint.			performance.
4.	Weld the straight lap joint in		\triangleright	Welding procedure
	flat position.	<u>Task (What):</u>	\triangleright	Defects of welding.
			\triangleright	Method of minimizing
		Weld lap join in flat		distortion.
		position.	\triangleright	Heat affected zone (HAZ).
		Standard (How well):		
		T ''' 11 1' CL		
		Lap joint welded in flat		
		position as per		
		drawing/instruction		
		Welding size maintained.		

- Wear goggles, apron, welding seal, Leather glove and shoes.
- Check the power connection.
- Check the earthing connection.
- Do not touch open wire when machine is on.
- Do not keep flammable materials around the working area.

Task 6: Weld 'T' joint in flat position.

Per	formance steps	Terminal Performance Objectives		Related Technical Knowledge
1. Obtain	the required drawing/	Condition (Given):	\checkmark	Concept of 'T' joint
instruct	ion.		\succ	Welding position.
2. Obtain	the required tools and	Workshop & Site, welding	\triangleright	welding bead and
materia	1.	tools, equipment and		reinforcement.
3. Fix the position	work piece in 'T' n with tack welding	materials		Paralleled gap and penetration method.
(angle 9	90°).	Task (What):	\succ	Welding procedure
4. Apply f	fixer/jigs		\succ	Method of minimizing
5. Weld th	ne straight 'T' joint in	Weld 'T' joint in flat		distortion.
flat pos	ition.	position.		Heat affected zone (HAZ).
		Standard (How well):	\succ	Ampere setting.
		'T' joint welded in flat		
		position as per		
		drawing/instruction		
		Weld bead and		
		reinforcement size		
		maintained.		

- Wear goggles, apron, welding seal, Leather glove and shoes.
- Check the power connection.
- Check the earthing connection.
- Do not touch open wire when machine is on.
- Do not keep flammable materials around the working area.

Task 7: Weld square butt in flat position.

	Performance steps	Terminal Performance Objectives	Related Technical Knowledge
1.	Obtain the required drawing/ instruction.	Condition (Given):	 Concept of square butt welding
2.	Obtain the required tools and	Workshop & Site, welding	 Welding position Welding procedure
3.	Fix the work piece in square	materials	 Welding bead and reinforcement
	tack welding		 Method of minimizing
4.	Weld the straight square butt weld in flat position.	Task (What):	distortion. ➤ Heat affected zone
	-	Weld square butt in flat	(HAZ).
		position.	Ampere setting.
			Type and size pf welding machine and Electrode.
		Standard (How well):	 Handling technique of welding gauge
		Square butt-welded in flat	
		position as per drawing /	
		instruction.	
		Weld bead and	
		maintained.	

Safety precaution

.

- Wear goggles, apron, welding seal, Leather glove and shoes.
- Check the power connection.
- Check the earthing connection.
- Do not touch open wire when machine is on.
- Do not keep flammable materials around the working area.

Task 8: Perform surface welding in horizontal position.

	Performance steps	Terminal Performance Objectives	Related Technical Knowledge
1.	Obtain required drawing/	Condition (Given):	 Horizontal welding position
2.	Obtain required tools and	Workshop & Site, welding tools,	 Selection of electrode. Penetration method
3.	Fix work piece in horizontal		 Welding procedure
	welding position with tack welding.	<u>1 ask (what):</u>	 Arc length. Angle of electrode and
4.	Weld straight surface weld in horizontal position.	Perform surface weld in horizontal position.	travel procedure.Defects of welding.
•			Ampere setting.
		Standard (How well): Surface weld performed in horizontal position as per drawing/instruction Weld bead and reinforcement size maintained.	

- Wear goggles, apron, welding seal, Leather glove and shoes.
- Check the power connection.
- Check the earthing connection.
- Do not touch open wire when machine is on.
- Do not keep flammable materials around the working area.

Task 9: Weld square butt in horizontal position.

	Performance steps	Terminal Performance Objectives		Related Technical Knowledge
1.	Obtain required drawing/ instruction.	Condition (Given):	\checkmark	Square butt-welding in horizontal position.
2.	Obtain required tools and material.	Workshop & Site, welding tools, equipment and materials	AA	penetration method. Selection of electrode.
3.	Fix work piece in square butt- welding position with tack		AA	Welding procedure Arc length.
4.	welding. Weld straight square butt weld	Task (What):		Angle of electrode and travel procedure.
	in horizontal position.	Weld square but in flat	\succ	Defects of welding.
5.	Check weldingThe root should be well filled.	position.	\wedge	Ampere setting.
	- The top of the weld should be slightly fix.	Standard (How well):		
		Square but welded in flat		
		position as per		
		drawing/instruction		
		Weld bead and reinforcement size maintained.		

- Wear goggles, apron, welding seal, Leather glove and shoes.
- Check the power connection.
- Check the earthing connection.
- Do not touch open wire when machine is on.
- Do not keep flammable materials around the working area.

•

I wolf I of I cholin bullace i chang in i choca poblicion	Task	10:	Perform	surface	welding	in	vertical	position.
---	------	-----	---------	---------	---------	----	----------	-----------

	Performance steps	Terminal Performance Objectives	Related Technical Knowledge
1.	Obtain required drawing/	Condition (Given):	Vertical welding position.
	instruction.		penetration method.
2.	Obtain required tools and	Workshop & Site, welding	Selection of electrode.
	material.	tools, equipment and	Ampere setting.
3.	Fix work piece in vertical	materials	\succ Arc length.
	welding position with tack		Vertical ascending and
	welding.		descending welding
4.	Start welding at the top of the		techniques.
	work piece along first scribed	<u>Task (What):</u>	 Electrode traveling angle
	line.		and speed.
5.	Weld straight surface welding	Perform surface welding in	Welding procedure
	in vertical position.	vertical position.	
		<u>Standard (How well):</u>	
		Surface welding performed	
		in vertical as per	
		drawing/instruction	
		Weld bead and	
		reinforcement size	
		maintained.	

- Wear goggles, apron, welding seal, Leather glove and shoes.
- Check the power connection.
- Check the earthing connection.
- Do not touch open wire when machine is on.
- Do not keep flammable materials around the working area.

Task 11: Perform fillet lap joint in vertical position.

	Performance steps	Terminal Performance Objectives	Related Technical Knowledge
1. 2. 3. 4. 5. 6. 7.	Obtain required drawing/ instruction. Obtain required tools and material. Scribe line. Tack weld. Chip off slag from the tack welding. Perform fillet lap joint in vertical position. Check welding quality.	Objectives Condition (Given): Workshop & Site, welding tools, equipment and materials Task (What): Perform fillet lap joint in vertical position. Standard (How well): Fillet lap joint performed in vertical position as per drawing/instruction Weld bead and reinforcement size maintained.	 Knowledge Fillet lap joint. penetration method. Selection of electrode. Welding procedure Ampere setting. Defects of welding. pre-heating and post heating. welding distortion. Electrode traveling method. Angle and traveling speed of electrode.

- Wear goggles, apron, welding seal, Leather glove and shoes.
- Check the power connection.
- Check the earthing connection.
- Do not touch open wire when machine is on.
- Do not keep flammable materials around the working area.

Task 12: Perform surface welding in overhead position.

	Performance steps	Terminal Performance Objectives	Related Technical Knowledge
1.	Obtain required drawing/ instruction.	Condition (Given):	 Clamping device. Overhead position.
2.	Obtain required tools and material.	Workshop & Site, welding tools, equipment and	 Penetration method. Selection of electrode.
3.	Prepare clamping device to hold the work piece for overhead welding.	materials	 Techniques of electrode traveling. Welding distortion.
4.	Fix welding materials in position.	<u>Task (What):</u>	 Electrode traveling method.
5.	Fix work piece in overhead position.	Perform surface weld in overhead position.	 Angle and traveling speed of electrode.
6.	Weld straight surface in overhead position.		Ampere setting.Arc length.
		Standard (How well):	
		Surface welding performed in overhead position as per drawing/instruction	
		Weld bead and reinforcement size maintained.	

- Wear goggles, apron, welding seal, Leather glove and shoes.
- Check the power connection.
- Check the earthing connection.
- Do not touch open wire when machine is on.
- Do not keep flammable materials around the working area.
| Task | 13: | Weld squa | are butt j | joint in | overhead | position. |
|------|-----|-----------|------------|----------|-----------|-----------|
| | | | ~~~~ | | 0.01.0000 | P 00-0-0 |

Performance steps	Terminal Performance Objectives		Related Technical Knowledge
Obtain required drawing/	Condition (Given):	\triangleright	Ampere setting.
instruction.		\triangleright	Electrode angle and
Obtain required tools and	Workshop & Site,		traveling method.
material.	welding tools, equipment	\triangleright	Penetration types and
Tack weld two plates and tack	and materials		methods.
them to an overhead support.		\triangleright	Defects of welding.
Stand directly under the weld in		\triangleright	Selection of machine and
line with it or slightly to one			electrode.
side.	Task (What):	\succ	Welding procedure
Mount the plates for welding in		\succ	Arc length
overhead position.	Perform square butt joint	\succ	Distortion minimizing
Fix welding materials in	in overhead position.		technique
position.			
Weld straight square butt joint	Standard (How well):		
in overhead position.			
	Square butt joint		
	performed in overhead		
	position as per		
	drawing/instruction		
	Weld bead and		
	reinforcement size		
	maintained.		
	Performance steps Obtain required drawing/ instruction. Obtain required tools and material. Tack weld two plates and tack them to an overhead support. Stand directly under the weld in line with it or slightly to one side. Mount the plates for welding in overhead position. Fix welding materials in position. Weld straight square butt joint in overhead position.	Performance stepsIerminal Performance ObjectivesObtain required drawing/ instruction.Condition (Given):Obtain required tools and material.Workshop & Site, welding tools, equipment and materialsTack weld two plates and tack them to an overhead support.Mount the plates for welding to 	Performance stepsTerminal Performance ObjectivesObtain required drawing/ instruction.Condition (Given): > > Workshop & Site, welding tools, equipment and materials>Tack weld two plates and tack them to an overhead support. Stand directly under the weld in line with it or slightly to one side.Workshop & Site, welding tools, equipment and materials>Mount the plates for welding in overhead position.Perform square butt joint in overhead position.>Fix welding materials in position.Standard (How well): Performed in overhead position as per drawing/instruction>Square butt joint performed in overhead position as per drawing/instructionWeld bead and reinforcement size maintained.>

Safety precaution

- Wear goggles, apron, welding seal, Leather glove and shoes.
- Check the power connection.
- Check the earthing connection.
- Do not touch open wire when machine is on.
- Do not keep flammable materials around the working area.

Module Code: M5

Module: Power Distribution Works

Description

This module is designed to equip trainees with the knowledge and skills on Power Distribution Works as a specialized module. This module intends to provide skill and knowledge on performing overhead and underground transmission distribution line erection, install service mains and install protection system in transmission distribution line as the sub modules.

Aim

This module aims to equip trainees with knowledge and skills on perform knowledge on power distribution works.

Objectives

After completion of this module the trainees will be able to:

- 1. Perform overhead and underground transmission and distribution line erection.
- 2. Install service mains.
- 3. Install protection system in transmission and distribution line.

Prerequisite: Basic module completed

Duration: 240 hours

S.N.	Code	Sub-modules	Nature	Total	Full
				hours	marks
1	SM5.1	Overhead Transmission and Distribution	T+P		
		Line Erection			
2	SM5.2	Underground Distribution Line Erection	T+P	240	200
3	SM5.3	Service mains and Load limit Switch	T+P		
4	SM5.4	Protection System in Transmission and	T+P		
		Distribution Line			
		Total		240	200

Module Structure (M5)

Module Code: M5 Sub module Code: SM5.1 Sub module: Overhead Transmission and Distribution line Erection

Description

This course is designed to help trainees to provide knowledge and skills on Overhead Transmission and Distribution line Erection as a sub module. This sub module especially, intends to provide knowledge and skills on selection of pole, erection of pole, installation of pole stay cable, conductor selection, insulator selection, calculation of conductor size, calculation of sag, and clearance maintenance.

Prerequisite: Basic module completed

Duration: 90 hours (18 hours theory and 72 hours practical)

Competencies

- Choose size/type of pole.
- Erect poles.
- ✤ Install pole stay cable.
- Perform conductor selection.
- Perform insulator selection and fittings.
- ✤ Calculate conductor size.
- Erect conductor and joint conductor.
- ✤ Calculate sag of conductor.
- ✤ Maintain clearance (Wire to structure).
- ✤ Maintain clearance (Ground to wire).
- ✤ Maintain clearance (Between wires).

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition (Given):	\checkmark	Purpose and
2.	Obtain catalogue/ standard or	Transmission/distribution		importance of pole
	guideline.	pole standard size	\triangleright	Types of poles
3.	Analyze the local site condition.	catalogue/ standard or	\triangleright	Handling of pole
4.	Analyze the availability and quality	guideline.	\triangleright	Treatment of pole
	of local wood.		\triangleright	Calculate the load
5.	Analyze the option with concrete	Task (What):		applied to the pole
	pole or metallic pole with	Choose a transmission	\triangleright	MH standards for
	transportation cost in consideration.	pole with appropriate		pole size
6.	Consider transmission/ distribution	dimension.		
	voltage level.			
7.	Determine the size and type of	Standard (How well):		
	pole.	Type and size of the pole		
8.	Record data.	selected as per MH		
		standard/ MH guideline.		

Task No: 1 Choose size / type of pole.

Task Analysis

Task No: 2 Erect poles.

	Performance steps	Terminal Performance	Related Technical		
		Objective		Knowledge	
1.	Receive instruction.	Condition (Given):	\checkmark	Purpose and	
2.	Obtain required tools, equipment	Transmission/ Distribution		importance of pole	
	and materials.	pole, field.	\triangleright	Comparison on cost	
3.	Choose the appropriate pole types.			analysis between	
4.	Drill the hole in the top portioning			overhead and under	
	the internal of respective phases	Task (What):		ground	
	and neutral.	Erect pole.	\succ	Concept of ease pole	
5.	Align the poles in straight lines to			erection.	
	minimize the stay sets.		\succ	Procedure	
6.	Ground 1/6 th part of total pole	Standard (How Well):	\succ	Safety precaution	
	length.	Pole are erected and			
7.	Clamp the D-iron and adjust	upright and straight			
	insulator.	aligned.			
8.	Coat the bitumen paint in the				
	grounded portion and 1 m above				
	the pole.				
9.	Record data.				

Task No: 3 Install pole stay cable.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition (Given):		Principle of stay set
2.	Obtain required tools, equipment	Vice puller, stay cable,	\triangleright	Importance and
	and materials.	stay insulator, turn buckle,		purpose of stay cable
3.	Lay the pole to the ground.	stay rod, stay plate,	\triangleright	Concept of
4.	Determine the pole that needs stay	transmission pole, line		temporary and
	supports (dead end poles, first	erection field.		permanent stay used
	poles, branch poles and pole which			during pole erection.
	have conductors bend angle more	Task (What):	\triangleright	Technical terms
	than 15^{0}).	Install stay cable between		associated with stay
5.	Incorporate stay accessories.	pole and to the ground		set
6.	Clamp stay wire by the vice puller.			
7.	Tension wire by vice puller as	Standard (How well):		
	instructed.	Pole stay cable set		
8.	Record data.	installed as per design and		
		drawing and well		
		tensioned.		

Task Analysis

Task No: 4	Perform	insulator	selections	and fittings.
------------	---------	-----------	------------	---------------

Performance steps	Terminal Performance Objective	Related Technical Knowledge
 Receive instruction. Obtain required tools, equipment and materials. Observe the available insulators Check insulators. Study the configuration. Fasten it to the pole with its accessories. Bind the ACSR conductor on it. Avoid metal contacts. Perform insulation test. Record data. 	Condition (Given): Insulators, pole, line erection field Task (What): Perform insulator selection and fittings Standard (How Well): Insulators selected and fitted as per norms.	 Knowledge Importance of insulator Concepts on types of insulators and its use Functions of insulators Concepts on Holdings and fastening insulator on poles. Concept on insulation test using megger

Task No: 5 Calculate Conductor size.

Performance steps	Terminal Performance	Related Technical
	Objective	Knowledge
1. Receive instruction.	Condition (Given):	Concept of cables
2. Obtain catalogue of cables,	Catalogue of cables,	and uses in the
calculator, and load demand chart.	calculator, load demand	electrical field
3. Obtain PVC and ACSR.	chart	Properties of various
4. Check the specializedations and		types conductors(
ratings of cables.	Task (What):	ACSR , ABC cables)
5. Determine the conductor size to	Calculate cable size	Importance of
transfer the design current.		conductor
6. Record data.	Standard (How Well):	Measurement of
	Required cable size is	cables continuity
	selected for designed	Calculation of
	current.	required conductor
	The current rating of the	rating
	cable selected shall be	
	50% overrated than that of	
	design current rating.	
	The selection for	
	conductor for distribution	
	line shall be such that the	
	voltage drop at far	
	receiving end does not	
	exceed 10%.	

	Performance steps	Terminal Performance		Related Technical
	•	Objective		Knowledge
1. 2.	Receive instruction. Obtain catalogue of cables, calculator, and load demand chart.	Condition (Given): Catalogue of cables,	$\boldsymbol{\lambda}$	Concept of electrical and mechanical properties of
3. 4.	and Unarmored cables. Check the specializedations rated in cables and conditions for laying	chart Task (What):	A	Concept of conductor in the electrical
5. 6.	conductors. Determine the standards. Connect the conductor as marked by the apparatus.	Perform conductor selection.	AA	engineering conductor selection criteria Importance of
7.	Record data.	Standard (How Well): Conductor selection performed as per norms.	A	conductor in the transmission and distribution line Measurement of conductor size
		Required cable size is selected for designed current. The current rating of the cable selected shall be 50% overrated than that of design current rating. The selection for. Conductor for distribution line shall be such that the voltage drop at far receiving end does not exceed 10%.		

Task No: 6 Perform conductor selections.

Task No:	7 Erect	conductor	and	ioint	conductor.
				J ~	

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1. I	Receive the instruction.	Condition (Given):	$\boldsymbol{\lambda}$	Concept of electrical
2. I	Embed the poles	ACSR conductor,		and mechanical
3. (Compact the poles with stone and	Overhead pullers, poles,		properties of
ľ	mud	helmet and safety belts,		conductor
4. I	Lay the conductor to the pole	gloves,	\triangleright	Importance of
5. 1	Tension the wire through the puller			conductor in the
6. J	Join the conductors with spouse	Task (What):		transmission and
j	joints or with grips.	Erect conductor and joint		distribution line
		conductor	\triangleright	Concept of
				conductors laying
		Standard (How Well):	\triangleright	Concept of using
		ACSR conductor erected		Overhead pullers
		well and joined properly.	\triangleright	Safety Requirements
				while giving tension
				in the conductor.

Task Analysis

Task No: 8 Calculate sag of conductor.

	Performance steps	Terminal Performance		Related Technical
	_	Objective		Knowledge
1.	Receive instruction.	Condition (Given):	\triangleright	Definition of sag
2.	Obtain catalogue.	Books, handouts,	\triangleright	Importance of sag in
3.	Strike the conductor.	catalogue, classroom,		transmission line
4.	Measure the wave velocity through	field, stop watch, paper,	\triangleright	Calculation of sag in
	the watch.	vice puller		transmission line at
5.	Calculate the sag on the conductor.			erecting time
6.	Record data.	Task (What):	\triangleright	Measurement of sag
		Calculate sag of		in the transmission
		conductor.		line
		Standard (How Well):		
		The sag in transmission		
		line calculated and tested.		

	Performance steps	Terminal Performance		Related Technical
	_	Objective		Knowledge
1.	Receive instruction.	Condition(Given):	\checkmark	Definition of
2.	Obtain tools, equipment and	Transmission line,		transmission line
	materials.	structure(stone, trees,	\succ	Importance and
3.	Follow the transmission route in	houses)		purposes of
	straight.			transmission line
4.	Transmit the line close to the	Task (What):	\succ	Procedure
	structure apart at least 1.50m.	Maintain clearance (wire	\succ	Safety precautions
5.	Record data.	to structure)		
		Standard(How Well):		
		Wire to structure		
		clearances maintained as		
		per guidelines as		
		prescribed by MHP		

Task No: 9 Maintain clearances (wire to structure).

Task No: 10 Maintain clearances (Ground to wire).

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition (Given):	\checkmark	Definition of
2.	Obtain tools, equipment and			transmission line
	materials.	Handouts, guide lines of	\succ	Importance and
3.	Follow the transmission route in	MHP, Transmission line,		purposes of
	straight	ground		transmission line
4.	Avoid to pass over the big stone		\triangleright	Procedure
	closer to the line	Task (What):	\triangleright	Safety precautions
5.	Trim the trees and bushes closer to			
	the line	Maintain clearance		
6.	Embed the poles	(Ground to wire).		
7.	Measure the ground clearance			
8.	Record data.	<u>Standard(How Well):</u>		
		Ground to wire clearances maintained as per guidelines as prescribed by MHP.		

Task Analysis

Task No: 11 Maintain clearances (between wires).

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition (Given):		Definition of
2.	Obtain tools, equipment and	Handouts, guide lines of		transmission line
	materials.	MHP, Transmission line, D-	\succ	Importance and
3.	Follow the transmission route in	iron clamp		purposes of
	straight.	_		transmission line
4.	Avoid passing over the big	Task (What):	\succ	Procedure
	stone closer to the line.	Maintain clearance (between	\triangleright	Safety precautions
5.	Trim the trees and bushes closer	wires).		• •
	to the line.			
6.	Drill the hole to suspend the	Standard(How Well):		
	conductor at least 30 cm in 3			
	phase, 4 wire system whereas in	Wire to wire clearances		
	single phase is 45 cm	maintained as per guidelines		
	respectively.	as prescribed by MHP.		
7.	Record data.	1 2		

Module Code: M5 Sub module Code: SM5.2 Sub module: Underground Distribution line Erection

Description

This course is designed to help trainees to provide knowledge and skills on Underground Distribution line Erection as a sub module. This sub module especially, intends to provide knowledge and skills on cable size calculation, cable selection, cable shoe selection and laying and joining cable.

Prerequisite: Basic module completed

Duration: 40 hours (8 hours theory and 32 hours practical)

Competencies

- ✤ Calculate cable size.
- ✤ Perform cable selection.
- ✤ Perform cable shoe selection & fittings.
- ✤ Lay down cable and join cable.

Task No: 1 Calculate cable size.

Performance steps	Terminal Performance	Related Technical
	Objective	Knowledge
1. Receive instruction.	Condition (Given):	Concept of cables
2. Obtain tools, equipment and	Catalogue of cables,	Uses in the electrical
materials.	Calculator, load demand,	field
3. Obtain Armored and	classroom	Properties of various
Unarmored cable catalogues.		types cables (Al or
4. Check the specializedations and	Task (What):	Cu cables)
ratings of cables.	Calculate Conductor size	Importance of Al or
5. Determine the cable size to		Cu cables
transfer the design current in	Standard (How Well):	Calculation of
given specified condition.	Required cable size selected	required cable rating
6. Record data.	for designed current.	
	The current rating of the	
	cable selected shall be 50%	
	over rated than that of design	
	current rating.	

Task Analysis

Task No: 2 Perform cable selections.

	Performance steps	Terminal Performance	Related Technical
		Objective	Knowledge
1.	Receive instruction.	Condition (Given):	Importance of cables
2.	Obtain catalogue of cables,	Catalogue of cables,	in the electrical
	calculator, and load demand	calculator, load demand chart	engineering
	chart.		Importance of cables
3.	Obtain PVC and ACSR,	Task (What):	in the transmission
	Armored and Unarmored	Perform cable selection	and distribution line
	cables.		Cable selection
4.	Check the specializedations	Standard (How Well):	criteria
	rated in cables and conditions	Required cable size selected	➢ Calculation of
	for laying conductors.	for designed current.	conductor size
5.	Choose the cables as per the	The current rating of the	Measurement of
	standards.	cable selected shall be 50%	cables size.
6.	Record data.	overrated than that of design	Concept of MH
		current rating.	reference standards
		_	

•

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition (Given):	\checkmark	Importance and
2.	Obtain tools, equipment and	Cable shoes, conductor,		functions cable shoe
	materials.	crimping tools	\triangleright	Calculation of the
3.	Identify the materials.			appropriate size and
4.	Insert conductor to the required	Task (What):		fittings
	cable shoes.	Select cable shoes	\triangleright	Selection criteria
5.	Crimp the conductor in to the cable			
	shoes.	Standard (How Well):		
6.	Record data.	Appropriate types of cable		
		shoes fittings selected as		
		per the conductor types		
		and size.		

Safety: Avoid the loose connection.

Task Analysis

Task No: 4 Lay down cables /join cable.

Performance steps	Terminal Performance	Related Technical
	Objective	Knowledge
1. Receive instruction.	Condition (Given):	Types of
2. Obtain tools, equipment and	Cables, pliers, cable shoes,	underground cables
materials.	crimping tools, single line	Importance of cable
3. Trim the insulator of the	diagram, joint box, field,	joint
conductor		Concept on single
4. Twist the both conductor	Task (What):	line diagram.
5. Insert cable shoes of appropriate	Lay down and Join the cable	Using crimping tools
size in the cables and crimp it.		Cable laying
6. Lay down the cables on either	Standard (How Well):	techniques.
cable trench or under ground in	Cable laid properly	 Safety precaution
earth as per the given	underground and or in	
instruction for the laying.	trench.	
	The cable shoes properly tied	
	and connected as per line	
	diagram provided.	

•

Module Code: M5 Sub module Code: SM5.3 Sub module: Service mains and Load limit Switch

Description

This course is designed to help trainees to provide knowledge and skills on Service mains and Load limit Switch as a sub module. This sub module especially intends to provide knowledge and skills on service main installation and connection of police switch.

Prerequisite: Basic module completed

Duration: 20 hours (4 hours theory and 16 hours practical)

Competencies

- ✤ Install service mains
- Connect police switch (limit switch)

Task No: 1 Connect service wire.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition (Given):	\checkmark	Definition of the
2.	Obtain tools, equipment and	Service wire, energy		service wire
	materials.	meter, DP switch, lab	\succ	Importance and
3.	Identify the phase and neutral wire.	room house		purpose of it
4.	Trim the certain span connects to		\triangleright	Measurement of
	the transmission line.	Task (What):		continuity
5.	Connect to the Energy meter and	Connect Service Wire	\triangleright	Troubleshooting
	D.P switch in the entry of house.		\succ	Safety precautions
6.	Check the continuity of house	Standard (How Well):		
	wiring.	Service wire between		
7.	Apply of long service wire may	transmission line and		
	cause excessive voltage drop.	households energy meter		
8.	Record data.	connected.		
		D.P Switch		
		Phase and Neutral wire		
		identified clearly before		
		connection.		

Task Analysis

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition(Given):	\checkmark	Definition of the
2.	Obtain tools, equipment and	Limit switch, unarmored		police switch
	materials.	cables, enclosures box,	\blacktriangleright	Importance and
3.	Select the limit switch	field		purpose of it
4.	Connect Incoming and outgoing		\blacktriangleright	Calculation of
	lines through it	Task (What):		required rating
5.	Kept it in metallic enclosures with	Connect police switch	\triangleright	Troubleshooting
	key locked.		\triangleright	Safety precautions
6.	Complete the circuit as per design	Standard (How Well)		
	layout			
7.	Test the circuit and observe the trip	Police switch connected as		
	with overload.	per norms and		
8.	Record data.	performance of the limit		
		switch tested.		

Task No: 2 Connect police switch (limit switch).

Safety: Avoid the failure of whole system.

Module Code: M5 Sub module Code: SM5.4 Sub module: Protection System in Transmission and Distribution Line

Description

This course is designed to help trainees to provide knowledge and skills on Protection System in Transmission and Distribution Line as a sub module. This sub module especially intends to provide knowledge and skills on protection system installation and regulation under the transmission and distribution line.

Prerequisite: Basic module completed

Duration: 90 hours (18 hours theory and 72 hours practical)

Competencies

- Perform protective device selection
- Perform protective device connection
- ✤ Install circuit breaker
- ✤ Install lightning arrestor
- Perform Star-Delta connections.
- ✤ Record /balance load.
- Regulate voltages.
- ✤ Measure/Maintain power factor.
- ✤ Measure/ Maintain earth resistance.

Performance steps		Terminal Performance		Related Technical
	_	Objective		Knowledge
1.	Receive instruction.	Condition (Given):	1.	Definition of the
2.	Obtain tools, equipment and	Handouts, books, calculator,		respective protective
	materials.	catalogue		devices
3.	Choose the appropriate		2.	Concept on protective
	protective devices as per line	<u>Task (What):</u>		systems (OV, UV,
	drawing.	Perform protective device		OF, UF, OC and SC)
4.	Obtain the devices of required	selection	3.	Importance and
	ratings.			purpose of these
5.	Prepare the lists of the	Standard (How Well):		protections
	protective devices.	Protection device with	4.	Operating principles
6.	Record data.	appropriate size and ratings		and functions of
		selected to protect from		protective devices
		over/under voltage, over	5.	Concept of MH
		current, short circuit.		reference standards
		The tripping range for	\succ	Concepts on
		voltage relay setting		troubleshooting
		maintained to	\succ	Safety precautions
		180 v < V > 250 v		
		The current protection		
		breakers shall be 1.25 times		
		of the rated design current.		

Task No: 1 Perform protective device selection.

Safety: Avoid over voltage, over current, short circuit.

Task Analysis

Task No: 2 Perform protective device connection.

	Performance steps		Terminal Performance		Related Technical
			Objective		Knowledge
1.	Receive instruction.		Condition (Given):	\succ	Define the respective
2.	Obtain tools, equipment and		Protective device, P.V.C		protective device
	materials.		cables, screw driver, wire	\triangleright	Importance and
3.	Study the line diagram.		striper, layout drawings,		purpose of it
4.	Observe the connecting point.		panel board	\triangleright	Operating principles
5.	Connect as per the instruction				and functions
	provided		Task (What):	\triangleright	Measurement of the
6.	Check the connection	and	Perform protective device		performance
	performance.		connection	\triangleright	Troubleshooting
7.	Record data.			\succ	Safety precautions
			Standard (How Well):		
			Protective devices		
			connected in specialized		
			point		
			The operation tested.		

Task No: 3 Install circuit breaker.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition (Given):	\checkmark	Definition of the
2.	Obtain tools and equipment.	Circuit Breaker, handouts,		circuit breaker
3.	Obtain the circuit breaker	catalogue, lecture, lab	\triangleright	Importance and its
4.	Observe the configuration			purpose
5.	Connect respective line as marked	Task (What):	\triangleright	Calculation of
	in it	Test and install circuit		required rating
6.	Give the supply	breaker	\triangleright	Interpretation of
7.	Check the operation & performance			Circuit breaker
8.	Record data.	Standard (How Well):	\triangleright	Troubleshooting
			\triangleright	Safety precautions
		Circuit breaker installed as		
		per norms		
		the operation checked		
		through the supply		
		Installation before the		
		load		

Task Analysis

Task No: 4 Install lightning arrestor.

Performance steps		Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition(Given):	\checkmark	Definition of
2.	Obtain tools, equipment and	Lightning arrestors,		lightning and allied
	materials.	bracing along its clamp,		arrestor
3.	Arrange the materials.	copper wire, measuring	\triangleright	Scope in the L.T and
4.	Excavate the ground.	instruments, salt, coal,		H.T transmission
5.	Install lightning arrestor in phase.	cu.plate, pvc pipe		line
6.	Facilitate the neutral.		\triangleright	Importance, purpose
7.	Take neutral to the ground.	Task(What):		and functions of
8.	Take Cu-wire.	Install lightning arrestor		lightning arrestor
9.	Joint to the Copper Plate.		\triangleright	Earthing testing
10.	Solder the connection.	Standard (How Well):		procedure
11.	Pass wire through GI pipe.	Lightning arrestor	\triangleright	Identification and
12.	Recommend brass nut bolt for	installed to discharge the		types of earthing
	connection.	high voltage and lightning.	\triangleright	Trouble shooting
13.	Test with the help of Meager.		\triangleright	Safety precautions
14.	Facilitate single phase and 3 phase			
	system accordingly.			
15.	Record data.			

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1. Recei	ve instruction.	Condition (Given):	٨	Importance of Star –
2. Obtai	n tools, equipment and			Delta connection
mater	ials.	Symbols chart, generator,	\triangleright	Interpretation of
3. Study	the internal configuration of	transformer, lab room,		drawings
gener	ator, transformer and	powerhouse.	\triangleright	Operating principles
induc	tion motor.			of star-delta
4. Meas	ure the resistance between			configuration
phase	s and phase-to –neutral.	Task (What):	\succ	Purpose of transmit
5. Conn	ect to the wire from control	Perform star-delta		the power
panel		connection.	\triangleright	Troubleshooting
6. Opera	te at synchronous speed.		\triangleright	Safety precautions
7. Recor	d data.	Standard (How Well):		
		Star-delta connection		
		performed as per norms		

Task No: 5 Perform Star-Delta connections.

Task Analysis

Task No: 6 Record /balance load.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1. 2.	Receive instruction. Obtain tools, equipment and materials	<u>Condition (Given):</u> Log book, phase balance sheet design guidelines		Concept of balance load Importance and
3. 4. 5.	Divide the households Connect the house alternate the phase equally Record data.	drawing paper, meters (voltage, current, frequency) <u>Task(What):</u> Balance the load	AA	purpose of balance load Procedure Safety precaution
		Standard (How Well): Load recorded and balanced as per norms		

Task No: 7 Regulate voltages.

Performance steps	Terminal Performance	Related Technical
	Objective	Knowledge
1. Receive instruction.	Condition (Given):	Define voltage
2. Obtain the voltage regulation	Voltage stabilizer, AVR,	regulation
equipments.	Measuring instruments,	Importance and
3. Connect proper connection.	lab room	purpose of it
4. Record the data.		Operating principles
5. Fill in the table.	Task(What):	 Safety precautions
6. Ensure the handling equipments	Regulate voltage	> Troubleshooting
easily.		
7. Observe the performance.	Standard (How Well):	
8. Record data.	Voltage regulated.	
	The permissible voltage at	
	consumer premises	
	ensured.	

Fask No:	8 Measure	/Maintain	power	factor.
-----------------	-----------	-----------	-------	---------

Performance steps	Terminal Performance	Related Technical
	Objective	Knowledge
1. Receive instruction.	Condition (Given):	Importance and purpose
2. Obtain tools, equipment and	Power factor meter,	of power factor
materials.	Clamp meter, data book,	Measurement of the
3. Arrange the required apparatus	catalogue, panel board	power factor
4. Connect proper connection.		Calculation of the
5. Series capacitors are connect in	Task(What):	required capacitor to
transmission line.	Maintain the power factor	neutralize the lagging
6. Record the data.		current
	Standard (How Well):	Safety precautions
	the output system designed	Troubleshooting
	and ensured	
	The necessary backup	
	protection avoided.	

Safety: Avoid necessary backup protection.

Task Analysis

Task No. 7 Tricasure/ maintain cartin resistance.					
Performance steps	Terminal Performance	Related Technical			
	Objective	Knowledge			
 Receive instruction. Obtain tools, equipment and materials. Measure earth resistance. Maintain earth resistance. Record data. 	Objective Condition (Given): Earth Electrode, Earthing plate, Megger Task (What): Measure/ Maintain Earth resistance Standard (How Well): Earth resistance measured and maintain as per norms.	 Knowledge Definition of earth resistance Importance and purposes of earth resistance Calculation of the required resistance Procedure Safety6 precaution 			

Task No: 9 Measure/ maintain earth resistance.

Module Code: M6

Module: Testing & Commissioning Works

Description

This module is designed to equip trainees with the knowledge and skills on Testing and Commissioning Works as a specialized module. This module intends to provide skill and knowledge on measure flow and head, measure insulation resistance for generator, transformer, domestic wiring and house wiring, operate ELC and IGC, measure current, measure/maintain voltage and frequency, and perform static test, dynamic test and power output test.

Aim

This module aims to equip trainees with knowledge and skills on testing commissioning works necessary to be a micro hydro technician.

Objectives

After completion of this module the trainees will be able to:

- 1. Measure flow and head.
- 2. Measure insulation resistance for generator, transformer, domestic wiring and house wiring.
- 3. Operate ELC and IGC.
- 4. Measure current.
- 5. Measure/maintain voltage and frequency.
- 6. Perform static test, dynamic test and power output test.

Prerequisite: Basic module completed.

Duration: 150 hours (30 hours theory and 120 hours practical)

Competencies

- ✤ Measure flow
- ✤ Measure head
- ✤ Measure insulation resistance for generator
- ✤ Measure insulation resistance for transformer
- ✤ Measure insulation resistance for domestic wiring
- ✤ Measure insulation resistance for industrial wiring
- Operate ELC (Electronic Load Controller)
- Operate IGC (Induction Generator Controller)
- ✤ Measure current
- ✤ Measure/ maintain voltage
- Measure / maintain frequency
- ✤ Perform installations checking at Static Condition
- Perform installations checking at Dynamic Condition
- Perform Power Output Testing.

Task No: 1 Measure flow.

Performance steps		Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive the necessary instruction	Condition (Given):	\triangleright	Various methods of
2.	Collect the required tools,	Salt, weighing machine,		flow measurements
	equipment and materials.	measuring tape, stop		(Area Velocity, Salt
3.	Measure the flow with each	watch conductivity meter,		dilution, weir)
	method.	weir, gauged and un-	\triangleright	Importance and
4.	Stir the salt in a bucket as per the	gauged river		purpose of the flow
	instruction			measurement.
5.	Drop the salt into the river	Task (What):	\triangleright	Calculation of flow
6.	Read the data from conductivity	Measure the flow using		with various
	meter	various methods		methods
7.	Compute the data and determine		\triangleright	Accuracy and
	the flow	Standard (How Well):		limitation of the
8.	Install the weir in appropriate	Flow measured with		various flow
	location	various methods.		measurement
9.	Calculate the flow			methods.
10.	Throw the floating matter in river		\triangleright	Concept on MH
11.	Calculate the x-section			reference standard
12.	Record the time taken by stop			and MH design
	watch			guidelines.
13.	Calculate the flow.			
14.	Compare the flow obtain by the			
	various methods.			
15.	Record data.			

Task No: 2 Measure head.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive the necessary instruction	Condition (Given):	\checkmark	Importance and
2.	Collect the required tools,	Long measuring tape,		purpose of head
	equipment and materials.	Abney level, GPS, Auto	\succ	Concept on using
3.	Survey the MH plant installed site.	Level, staff, ranging rod,		Abeny level, auto
4.	Fill the data in standardized format	record book, chopping		level.
5.	Compile the data	weapons, pressure gauge	\succ	Calculation of the
6.	Calculate the gross head.			height through
7.	Measure static head from pressure	Task (What):		survey.
	gauge reading.	Measure head	\triangleright	Measurement of
8.	Compare this reading with			head with pressure
	calculated gross head.			gauge
9.	Run the turbine at design discharge	Standard (How Well):		
	and measure dynamic head (Net	Head measured both with		
	head).	survey equipment and		
10	Record data.	with pressure gauge		
		reading accurately.		

Task Analysis

Task No: 3 Measure insulation resistances for generator.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive the necessary instruction	Condition (Given):	\checkmark	Definition of the
2.	Collect the required tools,	Megger, Digital		insulation
	equipment and materials.	Multimeter, , generator	\succ	Calculation of the
3.	Disconnect the supply to the panel	catalogue, lab		required insulation
	board	_	\succ	Measurement of the
4.	Open all phases	Task (What):		resistance insulation
5.	Join the phase through jack	Measure insulation	\succ	Troubleshooting
6.	Move the meager	resistance for generator	\succ	Safety precautions
7.	Test between Phases and Phase-			• •
	Neutral	Standard (How Well):		
8.	Fill the data.	Insulation resistance		
		measured for generator		
		Insulation resistance		
		maintained above 2-mega		
		ohm or as prescribed by		
		the manufacturer		
		catalogue.		

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive the necessary instruction	Condition (Given):	\checkmark	Definition of the
2.	Collect the required tools,	Digital Multimeter,		resistance insulation
	equipment and materials.	Transformer, Megger,	\succ	Calculation of the
3.	Disconnect the supply to the panel	catalogue, lab		required resistance
	board	_	\succ	Measurement of the
4.	Open all phases	Task (What):		insulation capacity
5.	Join the phase through jack	Measure insulation		by meter
6.	Move the meager	resistances for	\succ	Troubleshooting
7.	Test between Phases and Phase-	transformer.	\succ	Safety Precautions
	Neutral			
8.	Test the Earth-phases and neutral –	Standard (How Well):		
	earth.	Insulation resistances		
9.	Record data.	measured for transformer		
		as insulation resistance		
		specified by manufactures.		

Task No: 4 Measure insulation resistances for transformer.

Task Analysis

Task No: 5 Measure insulation resistances for domestic wiring.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive the necessary instruction	Condition (Given):	\checkmark	Definition of the
2.	Collect the required tools,	Digital Multimeter,		resistance
	equipment and materials.	Megger, House, catalogue	\succ	Calculation of the
3.	Disconnect the supply to the panel	of conductor		outlets and load
	board		\succ	Measurement the
4.	Take out main switch. All other	Task (What):		insulation
	fuses are in position	Measure insulation	\succ	Troubleshooting
5.	Position all switches.	resistance for domestic	\succ	Safety Precautions
6.	Position all the lamps or the holders	wiring		
	(short-circuited).			
7.	Short line and neutral terminals on	Standard (How Well):		
	the installation side.	Recommended value be		
8.	Record data.	examined		
		Insulation résistance		
		maintained 12.5M		
		OHM/no. of outlets		

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive the necessary instruction	Condition (Given):	\triangleright	Definition of the
2.	Collect the required tools,	Digital Multimeter,		resistance
	equipment and materials.	Megger, Industry,	\triangleright	Calculation of the
3.	Disconnect the supply to the panel	catalogue of conductor,		outlets and
	board	contactor, relay		inductive, resistive,
4.	Take out main switch.			capacitive load
5.	Position all the fuses.	Task (What):	\triangleright	Measurement of the
6.	Position all the switches.	Measure insulation		insulation
7.	Position all the lamps or the	resistance for industrial	\triangleright	Troubleshooting
	holders (short-circuited).	wiring	\triangleright	Safety precautions
8.	Short line and neutral terminals on			
	the installation side.	Standard (How Well):		
9.	Record data.	Recommended value		
		examined.		

Task Analysis

Task No:7 Operate ELC (Electronic Load Controller).

	Performance steps	Terminal Performance		Related Technical
	-	Objective		Knowledge
1.	Receive the necessary instruction	Condition(Given):	$\boldsymbol{\lambda}$	Definition of ELC
2.	Collect the required tools,	Turbine, AC Synchronous	\succ	Calculate required
	equipment and materials.	Generator, ELC, control		capacity for any
3.	Collect the materials	panel, ballast heaters,		MHP
4.	Install at Powerhouse	turbine assembly	\succ	Importance, purpose
5.	Connect between generator and			and functions of
	panel board	Task (What):		ELC
6.	Open the valve	Operate ELC	\succ	Troubleshooting
7.	Observe the movement of turbine		\succ	Safety precautions
	and generator	Standard (How Well):		
8.	Observe the reading of mains	Frequency variations		
	voltmeter in the panel board	controlled.		
9.	Set the proper position of voltage.			
10	Record data.			

Tusk 100 0 Operate 100 (Induction Obvernor Controller).

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive the necessary instruction	Condition (Given):	\checkmark	Definition of IGC
2.	Collect the required tools,	Turbine, Induction	\succ	Calculation of
	equipment and materials.	Generator, IGC, control		required capacity for
3.	Install at Powerhouse	panel, ballast heaters,		any MHP
4.	Connect between generator and	turbine assembly	\triangleright	Importance, purpose
	panel board	-		and functions of IGC
5.	Open the valve		\succ	Troubleshooting
6.	Observe the movement of turbine	Task (What):	≻	Safety precautions
	and generator	Operate IGC		
7.	Observe the reading of mains	_		
	voltmeter in the panel board	Standard (How Well):		
8.	Set the proper position of output	Voltage variations		
	voltage	controlled		
9.	Record data.			

Task Analysis

Task No: 9 Measure current.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive the necessary instruction	Condition(Given):	\checkmark	Definition of
2.	Collect the required tools,	Ammeter, clamp meter,		current
	equipment and materials.	load(resistive, inductive,	\triangleright	Importance and
3.	Move the turbine and generator by	capacitive), CT, panel		purpose of ammeter
	prime mover	board	\triangleright	Troubleshooting
4.	Install ammeter in series with load		\triangleright	Safety precautions
5.	Load coils insert through CT			
6.	Total the load	Task (What):		
7.	Switch on	Measure current		
8.	Record the current.			
		Standard (How Well):		
		Current drawn load.		

Task No: 10 Measure and maintain voltage.

	Performance steps	Terminal Performance Objective		Related Technical Knowledge
1.	Receive the necessary instruction	Condition (Given):	\triangleright	Definition of
2.	Collect the required tools,	ELC motherboard,		voltage
	equipment and materials.	voltmeter, digital meter,	\succ	Importance,
3.	Move the generator by prime	tester, panel board,		functions and
	mover	voltage trip circuit		purpose of voltage
4.	Read the voltmeter scale		\triangleright	Calculation of the
5.	Adjust the voltage by moving	Task (What):		required voltage to
	motherboard pot	Measure and maintain		operation
6.	Move either anticlockwise or	voltage	\succ	Troubleshooting
	clockwise as up to desired voltage		\succ	Safety precautions
7.	Set voltage from trip circuit as well	Standard (How Well):		
8.	Record data.	National		
		recommendations voltage		
		set		

Task Analysis

Task No: 11 Measure and maintain frequency.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive the necessary	Condition (Given):	\checkmark	Definition of
	instruction	ELC motherboard, frequency		frequency
2.	Collect the required tools,	meter, generator, digital	\triangleright	Importance and
	equipment and materials.	meter, tester, panel board		purpose of frequency
3.	Connect to the respective		\triangleright	Measurement of the
	connections	Task (What):		frequency
4.	Move the generator	Measure and maintain	\triangleright	Troubleshooting
5.	Attend to see frequency meter	frequency	\succ	Safety precautions
6.	Rotate frequency tab in			
	motherboard			
7.	Set as a permissible range.	Standard (How Well):		
8.	Record data.	Frequency within acceptable		
		limits measured.		

Task No: 12 Perform installations checking at Static Condition.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive necessary instructions.	Condition (Given):	\checkmark	Concept of free board
2.	Perform check with flow	Nozzles valves are closed,	\succ	Concept on flow
	control mechanism	required amount of water		control mechanism
3.	Check the free board sufficiency	taken into canal, at site	\succ	Pressure gauge
4.	Check headrace for if any	Task (What):		reading
	minor or major leakages	Perform installations	\succ	Concept of static and
5.	Check Penstock for if any	checking at Static		dynamic head
	minor or major leakages	Condition	\succ	Troubleshooting
6.	Check penstock lining for	Standard (How Well):	\succ	Safety precautions
	sagging or any cracks in piers or	All the parameters are tested	\succ	MH reference
	anchors.	as per the MH reference		standards.
7.	Record data.	standard		

Task Analysis

Task No: 13 Perform installations checking at Dynamic Condition.

Performance steps	Terminal Performance	Related Technical
	Objective	Knowledge
1. Receive necessary instructions.	Condition (Given):	Concept of vibration,
2. Perform various test as per the	Running power plants, Clam	noise, bearing
instruction	on RMS meters,	temperatures and
3. Record data		body temperatures.
	<u>Task (What):</u>	Concept on
	Perform installations	procedure of under
	checking at Dynamic	voltage, over voltage,
	Condition.	under/ over
		frequency test.
	Standard (How Well):	Concept on Load
	All the parameters are tested	acceptance, Load
	as per the MH reference	resection test.
	standard	 Pressure gauge reading
		 Concept of static and dynamic head
		> Troubleshooting
		> Safety precautions
		> MH reference
		standards.

Task No: 14 Perform Power Output Testing.

Performance steps	Terminal Performance		Related Technical
	Objective		Knowledge
1. Receive necessary instructions.	Condition (Given):	\triangleright	Concept of static and
2. Perform power test at various	RMS power meter, running		dynamic head
flow conditions with village	powerhouse, dump load for	\triangleright	Concept on flow
load and with ballast loads.	load varying		measurement
3. Record data		\succ	Measurement of
	Task (What):		power, current,
	Perform Power Output		Voltage and PF with
	Testing.		RMS meters
		\succ	Power measurement
	Standard (How Well):		techniques
	All the parameters are tested	\triangleright	Troubleshooting
	as per the MH reference	\succ	Safety precautions
	standard	\succ	MH reference
			standards.

Module Code: M7

Module: Micro-hydro Plant Management

Description

This module is designed to equip trainees with the knowledge and skills on Micro-hydro Plant management as a specialized module. This module intends to provide skills and knowledge on micro hydro plant management activities and social mobilization activities related to the occupation.

Aim

This module aims to equip trainees with knowledge and skills on micro hydro plant management necessary to be a micro hydro technician.

Objectives

After completion of this module the trainees will be able to:

- 1. Manage micro hydro plant
- 2. Explain the concept of socio-economic aspects of micro hydro.

Prerequisite: Basic module completed

Duration: 70 hours (20 hours theory and 50 hours practical)

Competencies

- Supervise sub-ordinate.
- ✤ Keep A/C system.
- ✤ Maintain log book.
- ✤ Maintain inventory.
- ✤ Conduct meetings with customers/villagers.
- ✤ Write minutes.
- ✤ Write progress / case study report.
- ✤ Collect costumer feedback.
- Form user committee.
- ✤ Mobilize group.
- Perform periodic maintenance.

Task No: 1 Supervise sub ordinate

	Performance steps	Terminal Performance	Related Technical
		Objective	Knowledge
1.	Receive instruction.	Condition(Given):	Concept of job
2.	Define roles and responsibility	At office	responsibilities
3.	State the issue.	Roles and	Situations and
4.	Conduct discussion on the issue	responsibilities	circumstances for
	for 5-10 minutes.		effective supervision
5.	Note the pros and cons of the	Task (What):	Advantages and
	issue raised in the discussion.		disadvantages of
6.	Record data.	Supervise sub ordinate.	supervision
		1	Process for supervision
		Standard (How Well):	
		Supervision made based	
		on professional ethics	

Task Analysis

Task No: 2 Keep A/C system.

Terminal Performance	Related Technical
Objective	Knowledge
Condition(Given):	Definition of account
At office	book
Ledger, Boucher, Check	Importance for
book, pass book	maintaining account
	Process for
Task (What):	maintaining account
	Format for different
Keep A/C system.	account
	➤ Main components of
Standard (How Well).	account system
Account maintained.	
The task steps followed	
in sequence.	
	Terminal Performance ObjectiveObjectiveCondition(Given):At officeLedger, Boucher, Check book, pass bookTask (What):Keep A/C system.Standard (How Well):Account maintained.The task steps followed in sequence.

Task No: 3 Maintain logbook.

Performance steps	Terminal Performance	Related Technical
	Objective	Knowledge
1. Receive instruction.	Condition(Given):	Definition of log book
2. Record machine's status	At office	Reasons/importance
3. Record machine's temperature	White board,	for maintaining log
4. Record machine's noise	blackboard, overhead,	book
5. Record current	slide projector, class	Process for filling log
6. Record voltage	room, sample log book	book
7. Record frequency		Format for logbook
8. Record the date on which periodic	Task (What):	➤ Main components of
maintenance was done	Maintain logbook.	log book
9. Record any other problems not	_	
mentioned above.	Standard (How Well):	
10. Record data.	Logbook maintained.	
	The task steps followed	
	in sequence.	
	-	

Task Analysis

Task No: 4 Maintain inventory.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition(Given):	\triangleright	Concept of inventory
2.	Collect list of different tools and	At site	\triangleright	Process for keeping
	equipments.	List of different		inventory
3.	Register purchase quantity, issued	materials (Purchase	\triangleright	Inventory forms and
	quantity, damage, wear and tear	quantity, issued quantity,		formats
	quantity etc.	damage, wear and tear		
4.	Calculate remaining quantity of	quantity etc)		
	different materials.			
5.	Verify the quantity with the stock	Task (What):		
	quantity in the store.	Maintain inventory.		
6.	Record data.	Standard (How Well):		
		All the steps followed in		
		sequence.		

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition(Given):	\triangleright	Concept of meeting
2.	Get everyone's attention	At office	\succ	Situations and
3.	Manage the time properly	Roles and		circumstances for
4.	Focus on important issue to be	responsibilities		effective meeting
	discussed.	Task (What):		conduction
5.	Proceed as per the subject matters	Conduct meeting s with	\succ	Advantages and
	in agenda.	customer.		disadvantages of meeting
6.	Avoid unwanted discussion		\succ	Process for conduction
7.	Manage one idea at one time.	Standard (How Well):		of meeting
8.	Respect the others view.			
9.	Record data.	All the steps followed		
		in sequence		
		1		

Task No: 5 Conduct meetings with customers/villagers.

Task Analysis

Task No: 6 Write minutes.

	Performance steps	Terminal Performance	Related Technical
		Objective	Knowledge
1.	Receive instruction.	Condition(Given):	Concept of minute
2.	Select one situation which requires	At office	Reasons for minute
	minute.	Different simulation	writing
3.	Take minute copy.	situations which requires	Different conditions
4.	Write minute (make sure that all	minute	for minute writing
	components of a minute i.e		Format for minute
	attendance, agenda, chairperson,	Task (What):	Main components of
	meeting date and decisions are		minute
	clearly written)	Write minute.	
5.	Make sure that all those who are		
	present in the meeting make	Standard (How Well):	
	signature		
6.	Circulate the decisions to the	Minute written.	
	concerned person/body.		
7.	Keep the minute book safely.	The task steps followed	
		in sequence.	

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition(Given):	\checkmark	Concept of progress
2.	Select one situation which requires	At office		report and case study
	progress/case study writing.	Different simulation	\succ	Importance of progress
3.	Take A4 size paper .	situations which requires		report
4.	Write progress report (make sure	progress/case reporting	\succ	Different conditions
	that all progress made during			for progress/case study
	specified time period is included)	Task (What):		reporting
5.	Submit the report to the concerned		\succ	Format for progress
	person/body.	Write progress/ case		and case study report
6.	Keep one copy for self record.	study report.	\succ	Main components of
				progress and case
		Standard (How Well).		study
		Standard (110w Wen):		-
		Progress report written		
		The task steps followed		
		in sequence.		
		1		

Task No: 7 Write progress/case studies report.

Task Analysis

	Performance steps	Terminal Performance		Related Technical
	-	Objective		Knowledge
1.	Receive instruction.	Condition(Given):	٨	Definition of feedback
2.	Develop checklists.		\succ	Importance of taking
3.	Question the community member	At meeting		feedback
	about his/her understanding of		\succ	Feedback collection
	micro-hydro.	Checklists, formats,		technique
4.	Inform the community member	consumers		
	about micro-hydro especially about			
	the need for end use enterprises to	Task (What):		
	make micro-hydro financially			
	viable	collect consumer		
5.	Collect the feedback from them	feedback		
6.	Answer the queries of the			
	community member.	Standard (How Well):		
7.	Record data.			
		The task steps followed		
		in sequence.		
		_		

Task No: 8 Collect consumer feedback.

Task No: 9 Form users' committee.

	Performance steps	Terminal Performance	Related Technical
		Objective	Knowledge
1. 2. 3. 4. 5. 6.	Performance steps Receive instruction. Build relationships, inform people about meeting, and collect information about best practices of traditional organizations in the area Present detailed study report and awareness creation on group formation Select representatives for Management Committee Determine rules/regulations, and roles and responsibilities of individual members and the Management Committee Inform VDC, NGOs, and other groups about formation of user group	Terminal Performance Objective Condition(Given): Roles and responsibilities of users' committee Task (What): Form users' committee Form users' committee . Standard (How Well): Users' committee formed. The task steps followed in sequence	Related Technical Knowledge Definition of users' committee Importance of users' committee Roles and responsibilities Process of committee formation
7.	Legalize and register users' group in District Water Resource Committee/ CDO office	in sequence.	
8. 9.	Assess commitment and organizational capacity of users. Record data.		
Task No: 10 Mobilize group.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition(Given):	\succ	Definition of group
2.	Obtain tools and equipment.	At village	\succ	Importance of group
3.	Select manufacturer/installer	Roles and		mobilization
4.	Conduct meeting for construction	responsibilities of users'	\succ	Objectives of group
	management	committee		mobilization
5.	Collect local materials (sand, stone,		\succ	Process of group
	poles etc)	Task (What):		mobilization
6.	Facilitate for civil construction	Mobilize group		
	(catchments, canal, foundations etc)			
7.	Transport electro-mechanical			
	equipment & materials	Standard (How Well):		
8.	Facilitate installation, testing and			
	commissioning	Mobilized group		
9.	Assess commitment and	properly.		
	organizational capacity of users.	property.		
10	. Record data.	The task steps followed		
		in sequence.		
		in sequence.		

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition(Given):	$\boldsymbol{\lambda}$	Concept of periodic
2.	Obtain tools and equipment.	At site and office		maintenance
3.	Maintain stocks of frequently	White board,	\triangleright	Importance of daily,
	damaged equipments like bearing,	blackboard, overhead,		weakly, monthly,
	belt, thyrister, panel meter, fuse	slide projector, class		quarterly, half yearly
	wire ,MCB, insulator, lighting	room,		and annual
	arrestor, nut bolts, screws, etc	A video for documentary		maintenance
4.	Maintain stocks of frequently	display	\triangleright	Handling of all tools
	needed materials like kerosene,			and equipments for
	grease, Mobil, insulation tape,	Task (What):		periodic maintenance.
	connectors etc			
5.	Store enough tools at appropriate	Perform periodic		
	place and means for regular repair	maintenance.		
	and maintenance like axe, shovel,			
	scrapper for civil works, wire	Standard (How Well):		
	cutter, nose pliers, minus plus screw	· · · · · · · · · · · · · · · · · · ·		
	driver, shouldering iron, multi	Periodic maintenance		
	meter, clamp meter, line tester,	performed.		
	safety belt, wire puller, knife for			
	electrical works and hammer, hack	The task steps followed		
	saw spanner, wrench, steel ruler,	in sequence.		
	grease gun, oil can, spirit level, wire	_		
	brush, khagsi etc for mechanical			
	works.			
6.	Perform maintenance on daily,			
	weakly, monthly, quarterly, half			
	yearly and annual basis to operate			
7	the project smoothly.			
1.	Record data.			

Task No: 11 Perform periodic maintenance.

Module Code: M8

Module: Small Enterprise Development

Description

This module is designed to equip trainees with the knowledge and skills on Small Enterprise Development as a common module. This course intends to provide skills and knowledge on generic skill and entrepreneurship development. The generic skill and entrepreneurship development included here is to make trainees competent for promoting wage and self employment opportunities.

Aim

This module aims to equip trainees with knowledge and skills on Small Enterprise Development necessary to be a micro hydro technician.

Objectives

After completion of this module the trainees will be able to:

- 1. Develop generic skill on related occupation.
- 2. Acquire entrepreneurship skill to be an entrepreneur.

Prerequisite: Basic and specialized modules completed.

Duration: 70 hours

Module Structure (M8)

S.N.	Code	Sub-modules	Nature	Total	Full
				hours	marks
1	SM 8.1	Generic Skill	T+P	40	
2	SM 8.2	Entrepreneurship Development	T+P	30	50
		Total		70	50

Module Code: M8 Sub module Code: SM 8.1 Sub module: Generic Skills

Description

This module is designed to equip trainees with the knowledge and skills on Generic Skills as a prerequisite course for mastering any specialized module/s. The course deals with the life skills needed to survive and adopt any change situation. Similarly, the trainees can cope with the existing environment and technology related to their occupation. *The focus of this package is to develop trainees to maintain personal hygiene, develop personality, enrich with marketing skills, and orient towards self-employment. Similarly, the trainees are to be prepared and educated for about worker traits and occupational code of conducts.*

Prerequisite: Core and specialized modules completed **Duration:** 40 hours (15 hours theory and 25 hours practical)

Competencies

- 1. Explain the importance of self awareness.
- 2. Orient with personal safety precaution/ hygiene
- 3. Write application for leave, visa, citizenship etc.
- 4. Read, notice, vacancy advertisement etc.
- 5. Keep records of materials, inventory.
- 6. Study prevailing rules, regulation, bye laws work ethics.
- 7. Develop bio-data.
- 8. Develop interpersonal skill with family, friends and members of organization
- 9. Make effective decision.
- 10. Solve simple problems.
- 11. Explain the process of airport proceedings.

Performance stens	Terminal Performance	Related Technical
r er tor mance steps	Objective	Knowledge
1. Receive instruction.	Condition(Given):	Definition of
2. Define self awareness.		awareness
3. Discuss importance of self	Reading materials	➢ Importance self
awareness.	C	awareness
4. Enlist zest of discussion.		
	Task (What):	
	Explain the importance of self awareness.	
	Standard (How Well):	
	Importance of self awareness explained.	

Task No: 1 Explain the importance of self awareness.

Task Analysis

Task No: 2 Orient with personal safety precaution/hygiene.

	Performance steps	Terminal Performance Objective	Related Technical Knowledge
1. 2. 3. 4. 5.	Receive instruction. Define safety precaution/personal hygiene. Enlist importance of safety precaution/personal hygiene. Enlist the things that should be considered while following of safety precaution/personal hygiene. Collect information on hazards	Condition(Given): People Working in workshop Task (What): Orient with personal safety precaution/	Definition of Personal hygiene and safety precaution Importance of safety precaution and personal hygiene Thing that we should consider during the personal hygiene and safety precautions
	condition.	All the Performance steps followed in sequence.	

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
		Condition(Given):	\succ	Definition of
1.	Select one situation which requires			application
	application.	Different simulation	\succ	Reasons for writing
2.	Take A4 size paper.	situations which requires		application
3.	write application (make sure all	application	\succ	Different conditions
	components of an application are			for writing application
	considered)	Task (What):		(for visa, citizenship,
4.	Make sure that main body agrees			leave etc)
	with the given situation.	Write application for	\triangleright	Format for application
5.	Submit to the concerned body.	leave visa citizenship	\succ	Main components of
	ý	etc		application
		Standard (How Well):		
		Application is in A4		
		format written		
		The task Performance		
		steps followed in		
		sequence		
		sequence.		

Task No: 3 Write applications for leave, visa, citizenship etc.

Task Analysis

Task	No:	4 Read	notice,	vacancy	advertisemen	t.
			,			

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Collect different types of news	Condition(Given):	\triangleright	Definition of tender
	paper.			document, notice,
2.	Select general notice and vacancy	Tender documents,		advertisement
	advertisement.	notices, vacancy	\succ	Importance of tender
3.	Read notice and vacancy	advertisements and		documents, notice and
	advertisement.	different newspapers.		vacancy advertisement
4.	Explain the general contents of			
	notice and vacancy	Task (What):		
	advertisement.			
		Read notice, vacancy		
		advertisement etc.		
		<u>Standard (How Well):</u>		
		Notice and vacancy		
		advertisement read and		
		interpreted.		

Task No: 5 Keep records of materials, invest	ntory.
--	--------

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Collect list of different	Condition(Given):	٧	Definition of Inventory
	materials.		\triangleright	Process for keeping
2.	Register purchase quantity,	List of different		inventory
	issued quantity, damage, wear	materials (Purchase	\succ	Inventory forms and
	and tear quantity etc.	quantity, issued		formats
3.	Calculate remaining quantity of	quantity, damage, wear		
	different materials.	and tear quantity etc)		
4.	Verify the quantity with the			
	stock quantity in the store.			
5.	Keep records.	Task (What):		
		Keep records of		
		materials, inventory.		
		Standard (How Well):		
		All the Performance		
		steps followed in		
		sequence.		

Task Analysis

Task No: 6 Study prevailing rules, regulation, bye laws, v	vork
ethics.	

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1. Colle	ect bye laws, rules regulation	Condition(Given):	٨	Definition of laws,
docu	ments, code of conduct etc.			rules and regulations,
2. Study	y the documents.	Prevailing rules,		bye laws, code of
3. List t	the main rules and regulation.	regulations, bye laws,		conduct and work
4. Keep	p records.	code of conduct		ethics
			\succ	Importance of bye
		Task (What):		laws, code of conduct and work ethics
		Study prevailing rules, regulation, by laws work ethics		
		Standard (How Well):		
		Important points of rules and regulations, bye laws listed out.		

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Collect detail information of the person.	Condition(Given):	AA	Definition Bio-data Points, that should be
2.	Keep the information into different	Detail information of the	N	considered in bio-data
3.	Develop bio-data in A4 size paper.	person		Advantages of bio data Procedure for
4.	Make sure no information is	Task (What):		reorganizing
5.	Sign the bio-data	Develop bio-data.		mormation in 010-data
6.	Keep records.	Standard (How Well):		
		 Bio-data is in A4 format with following contents Full Name Permanent Address Date of birth Educational Qualification Experience Language Signature developed. 		

Task No: 7 Develop bio-data.

Task No: 8 Develop interpersonal skill with family, friends and members of organization.

	Performance steps	Terminal Performance		Related Technical
1. 2. 3. 4. 5.	Receive instruction. Select the people with different behavior. Provide role for each person. Discuss on the given topic. Note down the words used for developing good relationships	Condition(Given): Different people with different behavior Task (What):		KnowledgeDefinition of goodrelationshipRelationship with yourfamily, friends andmembers of yourorganizationAdvantages of Good
6. 7.	between them End the discussion. Enlist the interpersonal relationship of each person.	Develop interpersonal skill with family, friends and members of organization.	4	relationship Tips for making good relationship
		Standard (How Well): Interpersonal skill with family, friends and members of organization developed.		

Task Analysis

Task No: 9 Make effective decision.

	Performance steps	Terminal Performance		Related Technical
		Objective		Knowledge
1.	Receive instruction.	Condition(Given):	\checkmark	Definition of decision
2.	State the issue.		\succ	Situations and
3.	Conduct discussion on the issue	Simulated debatable		circumstances for
	for 5-10 minutes.	issues		effective decision
4.	Note the pros and cons of the		\triangleright	Advantages of effective
	issue raised in the discussion.	Task (What):		decision
5.	Make decision using win win		\succ	Process for making
	strategy	Make effective decision.		decision
6.	Disseminate the decisions.			
		Standard (How Well):		
		Decision made on the		
		win/win strategy.		

Task No: 10 Solve simple problem.

	Performance steps	Terminal Performance	Related Technical
		Objective	Knowledge
1.	Receive instruction.	Condition(Given):	Definition of problem
2.	Select the person with simple		Types of problem
	problem.	Person with a simple	Problem solving process
3.	Orient with the problem.	problem related to the	Different types of
4.	Find different alternatives of	life	solutions
	solutions.		Merits and demerits of
5.	List merits and demerits of	Task (What):	each alternative solutions
	each solution.		Win/win strategy
6.	Select the best solution.	Solve simple problem.	Principles of persuasion
7.	Implement the solution.		
8.	Receive the feedback.		
		Standard (How Well):	
		Alternatives of solutions identified.	
		Person satisfied with the solutions.	

Performance steps	Terminal Performance	Related Technical
	Objective	Knowledge
1. Prepare for departure/arrival.	Condition(Given):	Airport for visiting
2. Make sure the carries required		different countries
documents (passport and ticket)	Simulated situation for	Arrival and departure
3. Check the baggage for security.	departure / arrival	Procedure for departure
4. Confirm the departure time		and arrival
looking at the information board		Registration
or TV.		Airport tax
5. Pay the airport tax.		Boarding pass
6. Register the ticket and baggage		Lost and findings
7. Collect the tags of the baggage.	Task (What):	Baggage collection
8. Collect boarding pass.		Immigration
9. Pass through security check.	Explain the process of	Security check
10. Proceed to the plane.	airport proceedings.	
11. Register name on the		
immigration of destination		
country.		
12. Arrange the transport to reach		
work station.	Standard (How Well):	
	All the Performance	
	steps followed in	
	sequence.	

Task No: 11 Explain the process of airport proceedings.

Tools/equipment:

Safety: Always receives passport from the points where it could be checked.

Module Code: M8 Sub Module Code: SM8.2 Sub module: Entrepreneurship Development

Description

This course is designed to equip the trainees with knowledge and skills on Entrepreneurship Development. The course deals with various entrepreneur competencies, project identification, enterprise management, marketing skills, promotional activities, and business scheme preparation and communication skills needed for their occupation.

Prerequisite: Core and specialized modules completed **Duration:** 30 hours (10 periods theory and 20 periods practical)

Competencies

- 1. Explain entrepreneurial competencies.
- 2. Select / identify a project.
- 3. Prepare a business scheme.
- 4. Conduct promotional activities.
- 5. Prepare cost effective production scheme.

Task No: 1	Explain	entrepreneurial	competencies.
------------	----------------	-----------------	---------------

14	sk 100. I Explain chu epi cheuriar		
	Performance steps	Terminal Performance Objectives	Related Technical Knowledge
1.	Observe the surrounding environment	Condition(Given):	Introduction to
	and entrepreneur own capabilities.		Entrepreneurship
2.	Develop entrepreneur own capabilities.	Workshop or site	> Traits of an entrepreneur
3.	Take Performance steps for achievement		> Concept of
	of		employment
	- economic objective.		Concept of business
	- social objective.		> Entrepreneurial
	- human objective.		competencies
4.	Prepare business plans based on ones		Managerial skill
	own findings.		_
5.	Develop new profitable business	Task (What):	
	opportunities by combining resources in		
	a new way.	Explain entrepreneurial	
6.	Produce marketable products.	competencies.	
7.	Create markets.		
8.	Innovate and develop improved		
	technologies.		
9.	Inspire others.		
10.	Supply quality goods.		
11.	Reduce cost for reducing price of		
	product.	Standard (How Well):	
12.	Provide employment.		
13.	Utilize the scarce resource properly.	According to established	
14.	Avoid social nuisances.	instruction.	
15.	Manage financial problem.		
16.	Develop management skill for all		
	business activities		
	- production, inventory, purchasing,		
	marketing, research and		
	development, financial and		
1.5	personnel.		
17.	Satisfy employees / consumers /		
10	partners.		
18.	Be dynamic, risk taking according to the		
10	situation.		
19.	Be perfect decision maker.		
20.	Develop confidence.		

Task No: 2 Select / identify a project.

Performance stens		Terminal Performance	Related Technical
		Objectives	Knowledge
1.	Make list of projects.	Condition(Given):	Concept of business
2.	Classify the projects in group		Introduction to SWOT
	according to	Workshop or site	(Strength, weakness,
	- personal interest / ability.		opportunity and
	- possibility of earning profit.		threat)
	- less risk.		Tips for opportunity
	- knowledge and skill needed.		selection
	- estimated size and available		Reason of business
	resources.		failure
	- prevailing level of		Requisites of business
	competition.	<u>Task (What):</u>	success
	- chance of expansion in future.		Project selection
	- level of competition.	Select / identify a project.	criteria
	- rising trend of future demand.		
	- duration.		
3.	Investigate the projects.		
4.	Determine		
	- form of business.		
	- provision of capital.		
	- location.		
	- available staffs according to		
	the project.		
	- office equipment.		
_	- government policy.		
5.	Prioritize the projects regarding		
	- strength, weakness,	Standard (How Well):	
	opportunity, threat.		
0.	Select right project according to	According to the selection	
	your vision and mission.	criteria and instructions.	
			1

Task No: 3 Prepare a business scheme.

	- Performance stens	Terminal Performance	Related Technical
	r er tot mance steps	Objectives	Knowledge
1.	Identify the project standard regarding	Condition(Given):	Concept and
	- functional.		importance of
	- technical.	Workshop or Site	business plan /
	- aesthetic.		scheme
	- capital cost.		Guideline for
	- life cycle cost.		preparing a
2.	Specify the objective of the project.		business plan
3.	Analyze net working by critical path method		Production
	- state the master activities of the project.		planning
	- evaluate whole activities.		Expenses
	- set up the sequence of activities.		Financial
	- allocate the time / duration for each	Task (What):	analysis
	activity.		\succ Profit and loss
	- study about the cost of activities (labor /	Prepare a business	account
	material / tools cost).	scheme.	
	- Prepare tabulation (sequence activities		
	with time).		
	- apply project evaluation and review		
	technique.		
4.	Analyze production		
	- prepare resource and multi project		
	schedule.		
	- state required men, machine, and		
	materials for each production activities.		
	- give specializedation of resources.	Standard (How Well):	
	- determine time schedule for each		
	activities.	According to the	
5.	Analyze finance	guidelines for	
	- by undiscounted method	preparing business	
	 calculate simple rate of return on 	plan.	
	investment.		
	 calculate payback period. 		
	- by discounted method		
	 calculate net present value. 		
	 internal rate of return. 		
	 benefit cost ratio. 		
6.	Develop financial plan		
	- indicate funds need by form for the		
	specified period.		
	- indicate timing of inflows and outflows.		
	- indicate sources.		
	- indicate use of funds for project activities.		
	- forecast to determine the specialized		
	amounts and timing of expenditure and		
	receipts.		
	- follow the profit and loss account.		

Task No: 4 Conduct promotional activities	Task I	No: 4	Conduct	promotional	activities.
---	--------	-------	---------	-------------	-------------

dge promotion ition model
promotion tion model
tion model
nt
advertising
media
advertising

Task No: 5 Prepare cost effective production.

Performance steps	Terminal Performance Objectives	Related Technical Knowledge
1. Receive verbal/ written instruction.	Condition(Given):	Concept of cost affective production
equipment.	Class room, calculator,	 Importance of cost
3. Prepare work plan.	specification, price list	effective production.
 Prepare manpower plan. Determine stage of supervision 	and accessories.	Figure of preparing cost
 6. Calculate the cost like: material, 		effective production.
7. Calculate per unit cost for		
fabrication.	Task (What):	
8. Sum up total price.	Prepare cost effective	
9. Review production.	production.	
	Standard (How Well):	
	Cost effective production prepared for cost reduction.	

OJT for Micro hydro Technician

Overview of OJT

On-the-Job Training is an individual training approach designed to train the learner to perform certain task while working in the job. It creates appropriate working environment for the teaching learning activities. Training is relevant as the learner is being trained in a real work setting. The aim of the On the Job Training (OJT) is to provide the learner the maximum experience & exposure of "The World of Work".

In one occupational set up, it is not possible to expose the trainees for all required competencies that they have to master to perform their future job. Moreover, trainers and institution management should take precaution while planning for the OJT placement. Therefore, it is suggested to plan the OJT placement on rotating modality so that the trainees will have enough opportunity to practice the skills enlisted for OJT exposure.

Objectives of OJT

After completion of OJT the trainees will be able to:

- 1. To practice/ apply the skills/ knowledge developed by the trainees through institutional training in the real world of the related occupation
- 2. To practice the skills gained through institutional training that the trainees have not got enough opportunity to practice and apply them due to the institutional constraints and or limitation
- 3. To gain world of work experiences
- 4. To acquire skills and knowledge developed in the related field of occupation
- 5. To make trainees familiar with the future occupation/ job they are going to hold
- 6. To provide trainees with supporting skills and knowledge necessary for the related occupation
- 7. To make trainees familiar with the day to day administrative / management activities applicable in their related occupation.

OJT placement

The related training institute needs to perform the followings for OJT placement of the trainees.

Make list of the employer agencies:

- 1. Make list of the Employer agencies:
 - (a) Micro hydro projects run by the government / Private agencies
 - (b) Micro hydro projects run by NGOS / INGOS
 - (c) Others
- 2. Select the employer agencies / related industries:
 - (a) Obtain the curriculum
 - (b) Match the skills specified in the curriculum with the occupational activities being conducted by industries.
 - (c) Select the employer agency for OJT which: -
 - Is well equipped and can provide maximum opportunity to practice /develop / apply the skills and knowledge included in the curriculum
 - Can provide recently developed knowledge / skills in the related occupation
 - Has the possibility to offer job for the trainees having satisfactory job performance after the completion of OJT.
 - Can offer facilities to the trainees during OJT.
- 3. Contact employer agency for OJT
- 4. Make agreement with employer agency regarding OJT.

- 5. Orient the employer regarding supervision & evaluation of the trainees on OJT.
- 6. Assign the trainees who have passed institutional training to the selected employer agencies
- 7. Orient the trainees for OJT (Objectives, curriculum, activities in which they have to be involved, recording, supervision & evaluation etc.)
- 8. Send Trainees with official letter for OJT.
- 9. Manage / provide salary (at least to cover the living cost) to the trainees.
- 10. Have initial supervision to help socialize and guide the trainees sent for the OJT.
- 11. Have periodic supervision and evaluation of the trainees at least three times at an interval of two months during the period of OJT.
- 12. Collect feedback as inputs for the revision of the curriculum for future.
- 13. Keep records.

Orientation to the Trainees for OJT

The trainees who are placed on OJT are to be oriented by the related institute about the followings:

- 1. OJT Activities
- 2. OJT Evaluation
- 3. OJT curriculum

Suggestion for Trainees for OJT

- 1. Receive orientation for OJT provided / delivered by the related Training institute
- 2. Obtain curriculum
- 3. Obtain official letter for Joining OJT
- 4. Contact the assigned organization
- 5. Maintain attendance
- 6. Manage Accommodation
- 7. Obtain Job description
- 8. Visit / observe the activities related
- 9. Study critically the related units of industry
- 10. Obtain curriculum
- 11. Match the tasks specified in the curriculum with the actual tasks / activities being carried in the industry.
- 12. Make lists of tasks:
 - (a) You need to practice for confidence building
 - (b) You need to practice the skills that are not covered in the institutional Training
 - (c) You need to practice the skills that are not included in the curriculum but need to perform in the real world of the occupation for successful OJT performance.
 - (d) Recently developed skills through research applicable to your level of job after OJT.
- 13. Finalize the Task list consulting with:
 - (a) Your supervisor &
 - (b) Instructor
- 14. Practice / perform / develop as many related skills as possible related to your level of job.
- 15. Perform related administrative functions.
- 16. Perform / develop skills on cue the duties and tasks specified in the job description provided by the employer during OJT.
- 17. Get help form the senior (s) / supervisor (s) to perform the tasks \develop skills as maximum as possible.
- 18. Develop daily diary / Log book
- 19. Fill the daily diary / Log book

- 20. Get signed by your supervisor regularly
- 21. Seek & follow suggestion from seniors
- 22. Show excellent job performance to influence your senior (s) / supervisor so that they could will recommend to the employer to offer you the job after OJT.
- 23. Develop professionalism.

OJT Evaluation

The OJT will be evaluated by:

- a. Related supervisor of organization
- b. Related instructor/supervisor of the training institute
- c. CTEVT (representative or assigned expert if needed)

The marks distribution for the OJT evaluation of the trainees will be as follows:

S.N.	Evaluators	Marks Distribution		
		Full Marks	Percentage	
1.	Related Supervisor of the industries /	200	50%	
	Organization			
2.	Related supervisor / instructor of the	100	25%	
	training institute			
3.	External expert	100	25%	
	Total	300	100%	

Competencies to be performed during OJT

The trainees are suggested to practice all the critical competencies falling under each module repeatedly during the period of OJT.

DACUM Panel

Mr Pursotam Panthi Butwal

Mr. Gopal Chandra Joshi Butwal

Mr. Prawal Bhatarai Butwal

Mr. Sagar Panday Butwal

Mr. Joyti Prakash Sharma(Acharya) Butwal

Mr. Indra Bahadur Thapa Butwal

Mr. Madhu Hamal Butwal

Mr. Pram kaucha Butwal

Mr. Min Bahadur Thapa Butwal

Mr. Mukundha Paudel Butwal

Mr. Chet Narayan Sharma Butwal

Mr. Khem Gurung Butwal

DACUM Coordinator

Dr. Ram Hari Lamichhane TFE

DACUM Facilitators

Mr. Bishnu Koirala

Mr.Mister Kant Mainali Curriculum Division, CTEVT

DACUM (Job Analysis) of Micro-hydro Technician

October, 2006

Training for Employment Project Pulchowk, Lalitpur

Α	Perform 2	Bench Works					
A1.	Measure/ mark work piece	A2. Cut/file work piece	A3. Drill work piece	A4. Thread work piece	A5. Grind work piece	A6. Apply venire caliper	A7. Tighten /open nuts/bolts
B	Perform '	Welding					
B1.	Perform surface welding in flat position.	B2. Weld edge joint in flat position.	B3. Weld lap joint in flat position.	B4. Weld 'T' joint in flat position.	B5. Weld square butt in flat position.	B6 Weld single 'V' butt in flat position.	B7.Weld double 'V' butt in flat position. B6.
B8. joint posi	Weld corner t in flat tion.	B7. Weld square butt in horizontal position.	B8. Perform surface welding in vertical position.	B9. Weld single 'V' butt joint in vertical position	B10. Perform fillet lap joint in vertical position.	B11. Perform surface weld in overhead position.	B14. Weld square butt joint in overhead position.
C	Sketch D	rawings					
C1.	Read / Interpret scale	C2. Draw Lines	C3. Draw free hand sketches	C4. Draw lay- out Diagram	C5. Draw wiring diagram	C6. Interpret plan, elevation & section	C7. Interpret Isometric view
C8.	Interpret orthographi c view	C9. Interpret photographic view	C10. Interpret manual	C11. Draw schematic drawing			
D	Basic Civ	il Works					
D1.	Prepare cement & motor	D2. Prepare conrete	D3. Lay plaster/ concrete	D4. Build masonry wall	D5. Fill/ align gabion box	D6. Join HDPE pipe	D7. Make/HDP E fittings
D8. J	Join HDPE & GI Pipe	D9. Join GI pipes	D10. Thread pipes				
E	Perform]	Electrical Work					
E1.	Interpret electrical symbols	E2. Design house wiring system	E3. Install / Control single phase wiring	E4. Install three phase wiring	E5. Design three wiring system	E6. Install main switch	E7. Install one- way/two way switch,/fuse indicator
E8. 1	Install junction box	E9. Install five pin/ three pin/ two pin socket	E10. Connection accessories	E11. Perform equipmen t earthling	E12. Perform system earthling		
F	Generate	Power					
F1.	Measure flow	F2. Calculate canal cross section	F3. Maintain fore bay	F4. Measure head	F5. Calculate/ power measure	F6. Maintain intake/ head	F7. Maintain penstock pipe
F8.	Operate gate valve	F9. Measure pressure	F10. Regulate flow control valve	F11. Align turbine bearing/ runner	F12. Maintain tack ballas	F13. Measure/ monitor bearing temperatu	F14. Measure insulation resistance for

DUTIES & TASKS for Micro-hydro Technician Perform Bench Works

F15	. Measure insulation resistance for transformer . Measure / maintain voltage	F16. Measure insulation resistance for domestic wiring F23. Measure/m aintain frequency	F17. Measure insulation resistance for industrial wiring F24. Align for belt pulley system	F18. Operate ELC (Electronic Load Control) F25. Align turbine/ generator	F19. Operate IGC (Injection Generator Control) F26. Install / operate emergency	F20. Calculate/ measure energy F27. Install ballast	F21. Measure current F28. Synchron ize generator
				shaft for direct coupling system	cut out system		
F29	. Excite generator	F30. Adjust belt tensioning	F31. Ensure canal condition (leakage, fill up)				
G	Perform l		tion Works				
G1.	Choose size / type of pole	G2. Install pole stay cable	G3. Erect pole	G4. Perform insulator selection	G5. Calculate cable size	G6. Perform cable selection	G7. Calculate sag
G8.	String cable	G9. Operate circuit breaker	G10. Install lightening arrestor	G11. Maintain clearance (wire to structure)	G12. Maintain clearance (ground to wire)	G13. Maintain clearance (between wire)	G14. Perform protective device selection
G15.	Perform protective device connection	G16. Connect service wire	G17. Connect police switch (limit switch)	G18. Perform Star-delta connection	G19. Record/ balance load	G20. Regulate voltage	G21. Measure/ maintain power factor
G22.	Measure / maintain earth resistance	G23. Join cable	G24. Perform cable shoe selection & fittings	G25. Calculate electrical energy loss			
H M	I/H Plant N	Aanagement					
H1.	Read meter	H2. Keep A/C system	H3. Prepare bills	H4. Maintain log book	H5. Supervize sub- ordinate	H6. Maintain inventory	H7. Conduct meetings with customer
H8.	Progness write/ case study	H9. Write minutes	H10.Prepare checklist for preventive maintenance	H11.Perform periodic maintenanc e			
Ι	Mobilize	Societies					
I1.	Collect costumer feedback	I2. Conduct villager meeting	I3. Form user committee	I4. Assist in developing constitutio n	I5. Mobilize user group		
J	Repair / N	/Iaintain M/H]	Plant				
J1	Repair belt	J2 Pull/ grease bearing	J3 Replace turbine bearing	J4 Repair expansion joint	J5 Repair / replace butterfly valve	J6 Repair / replace gate valve	J7 Repair thyrastore HRC fuse

J8	Replace transforme r	J9 Replace ampere meter	J10 Replace volt meter	J11 Replace frequency meter	J12 Replace air/ water heater	J13 Replace turbine runner	J14 Replace flow regulating valve
J15	Replace ELC/ IGC	J16 Replace carbon brush	J17 Change slip ring	J18 Repair / Replace Contractor / circuit brackor	J19 Replace fuses	J20 Replace AC/ DC relay	J21 Replace MCCB
J22	Replace parts of emergency cut out system	J23 Refill distilled water in battery	J24 Repair / replace sluice gate				
K Co	ommunica	te with Other			•		
K1.	Communic ate with senior technician	K2. Communic ate with junior technician	K3. Communic ate with villager	K4. Communic ate with customer	K5. Communic ate with lient	K6. Communic ate with colleagues	K7. Communic ate with fabricator
K8.	Communic ate with supervisor	K9. Receive phone calls					
L De	evelop Prot	fessionalism					
L 1	Seek	L.2 Attend	L 3 Read books	L 4 Browse	L 5 Watch AV	L 6 Visit parts	L 7 Visit Shops

Workor T	roita	Entry	Coroor Doths	Futuro
worker 1		Entry D.	Career Pauls	Future
Neat & tidy	Interested towards	Requirements	Senior technician	Concerns
Punctual Enior disc	WORK	Minimum age 16 yrs.	mstructor	Competitive
Friendly Essents lesser	Patience	Eight class pass	1	Bright future
Eager to learn	Cooperative	Physically fit (eyes and	1	
Disciplined	Curious	nands in good		
Sorvice oriented	Alort	condition)		
Honest	Ethical			
Hard working	Luncar			
ind working		Duration of		
		training		
		12 months		
Dolotor	d Taabnical Know	lodgo	Tools &	Fauinmont
Kelateo	1 Technical Know	leuge		Equipment
Introduction of micro-hyd	dro, Activities in mic	cro-hydro	Dıgıtal	Spanner sets
(generation, distribution,	components, functio	n), Concept of	multimeter	Chisel
electricity, Definition of	flow, flow measurem	ent methods,	Clampmenter	Ellen key
concept of head, type of a	canal section, calcula	tion of area of canal	Insulation tape	Wire steeper
section, concept of power	r, calculation of pow	er, concept of	Soldering iron	Line tester
energy, concept of current	nt, concept of voltage	e, concept of	Disordering	Grease gun
frequency, concept of res	istance, methods of 1	measuring (current,	pump	Side cutter
voltage, resistance and from	equency, belt alignm	ent, belt tensioning	Slide wrench 8"	Control panel
technique, concept of pre	ssure, relation betwe	en pressure and	Screw driver sets	Digital clamp meter
head, working principle of	of ELC/IGC concept	of fore bay, concept	Line tester	Combination pliers
of intake, expansion joint	s, installation of pen	stock pipe, working	Cutting pliers	Nose pliers
principle of expansion jo	int, types of valves, t	ypes of insulators,	Nose pliers	Cutting pliers
function of ballast tank, c	concept of bearing ter	mperature, concept	Side cutters	Thyristor
of insulation resistance,	working principle, ty	pe and technique of	Socket wrench	Belt one set
turbine alignment/ genera	ator alignment, conce	ept of emergency	Measuring tape	Ammeter, Tester
cutout system, function a	nd types of bearing,	function of ballast	Hammer	HRC fuse one set
siren, concept of synchro	nization and exciting	generator, concept	Wire steeper	each
of load balancing, voltage	e regulation, concept	of sagging and	Brush. Knife	Penstock and other
clearance of conductor. c	oncept and maintaini	ing of power factor.	Power	equipment
concept of earthling and i	its type, star-delta co	nnection. cable	clamp/multimeter	Flat file
selection criteria, function	n and selection criter	ia of protective	Wire puller with	Round file
devices, concept and wor	king principle of cur	rent limiting	wire grip	Rough file
devices distribution lines	s hardware methods of	of installation	and Brip	Volt meter
method of cable jointing	types of cable shoe	and fittings types		Frequency meter
and selection of service v	vires working princi	ple and types of		
circuit breaker, methods	of energy loss calculation			
principle of lighting arres	ster, identification of			
methods of wiring. 3 pha	se industrial wiring.			
handling technique of too	ols and equipment. ty			
function of fuse, type of l	belt, types and select			
instrumentation metering	g measurement and n			
finding bearing damage	bearing nulling fittin	g technique		
working principle of tran	sformer working pri	nciple of turbine		
working principle of gene	erator concept of bal	last heater		
working principle of gen	ration, concept of Dal	hust ficater		

Additional Information for Micro-hydro Technician

-	List of Tools and Equipment							
Ξ.						Ĵ		
2	1.	Adjustable wrench		37.	Mason hammer	12		
2	2.	Ammeter, Tester	1	38.	Measuring tape	1		
2	3.	Arc – Carbon holder		39.	Nose pliers			
2	4.	Arc welding table	-	40.	Number punch	2		
÷.	5.	Back square		41.	Penstock and other equipment	- 2		
2	6.	Belt one set		42.	Pipe vice	- 2		
2	7.	Bench vice	1	43.	Chain vice	2		
2	8.	Bevel Protector	-	44.	Power clamp/multimeter	-		
2	9.	Brush, Knife		45.	Radius gauge	2		
÷	10.	Centre punch		46.	Reamer	-		
2	11.	Chipping hammer		47.	Rough file	-		
2	12.	Chisel	1	48.	Round file	1		
2	13.	Clampmenter		49.	Scissor			
2	14.	Cleaning brush	1	50.	Screw driver sets	1		
÷.	15.	Combination pliers		51.	Scriber			
2	16.	Control panel		52.	Side cutters	-		
2	17.	Counter boar	1	53.	Slide wrench set	1		
2	18.	Counter sink		54.	Socket wrench			
2	19.	Cutting pliers	-	55.	Soldering iron	2		
÷.	20.	Digital clamp meter		56.	Spanner sets			
2	21.	Digital multimeter		57.	Spark lighter	- 2		
2	22.	Disordering pump	-	58.	Steel hammer			
2	23.	Divider (inside / out side)		59.	Tapping dies	-		
2	24.	Drill bit (metal)	1	60.	Threading dies	1		
2	25.	Drill M/C		61.	Thyristor	-		
2	26.	Ellen key		62.	Tongs	2		
2	27.	Flat file		63.	Vice gripe			
2	28.	Frequency meter		64.	Volt meter	-		
2	29.	Grease gun	1	65.	Welding blow torch	1		
2	30.	Hack saw frame	-	66.	Welding gauge	-		
2	31.	Hammer		67.	Welding goggles	2		
2	32.	Heating nozzle	-	68.	Welding nozzle			
2	33.	Hose pipe		69.	Welding shield			
2	34.	HRC fuse one set each	1	70.	Welding socket and plug	1		
2	35.	Insulation tape		71.	Wire puller with wire grip			
2	36.	Line tester	-	72.	Wire steeper	Ż		
						5		

References

AEPC/ESAP Publications

- 1. Existing Micro hydro and Pico hydro Standards of Nepal
- 2. Guidelines for pre- feasibility studies of Micro-hydro projects
- 3. Guidelines for detailed feasibility studies of Micro-hydro projects
- 4. Social Mobilization for Micro-hydro Schemes, A Reference Guideline

Experts involved

Stage 1: Job Analysis

DACUM Panel Members

Mr. Pursotam Panthi, Butwal

Mr. Gopal Chandra Joshi, Butwal

Mr. Prawal Bhatarai, Butwal

Mr. Sagar Panday, Butwal

Mr. Joyti Prakash Sharma(Acharya), Butwal

Mr. Indra Bahadur Thapa, Butwal

Mr. Madhu Hamal, Butwal

Mr. Pram kaucha, Butwal

Mr. Min Bahadur Thapa, Butwal

Mr. Mukundha Paudel, Butwal

Mr. Chet Narayan Sharma, Butwal

Mr. Khem Gurung, Butwal

DACUM Coordinator

Dr. Ram Hari Lamichhane

DACUM Facilitators/Recorders

Bishu Koirala, CTEVT, Bhaktapur

Mister Kant Mainali, CTEVT, Bhaktapur

Stage 2: Task Analysis Brijesh Mainali, Energy Sector Assistant Program

Ram Prasad Dhital, Alternative Energy Promotion Centre

Stage 3: Comments and Editing Devi Prasad Dahal, TFE

Dr. Ram Hari Lamichhane, TFE Srijana Thapa, TFE Sagar Mani Lamsal, CTEVT Bishnu Koirala, CTEVT Mister Kant Mainali, CTEVT

Glossary used in the technical and vocational curricula

Competency: A performance capability needed by workers in a specialized area.

Curriculum guide: A curriculum guide is a detail resource for teachers to conduct training programs effectively. The guide intends to add the teacher in developing lesson plan, handouts, training manuals, and evaluation criteria etc, which are basic elements in the teaching learning process.

Curriculum: A plan for providing sets of learning opportunity to achieve broad goal and related specialized objectives for an identifiable population serves by a single school center.

DACUM: <u>Developing A Curriculum</u>. DACUM is a technique that uses a group consultative process to identify the competencies relevant to a particular occupation. These competencies are then built on to form a vocational curriculum.

Duty: is an arbitrary clustering of related tasks in to broad functional area or general area of responsibility.

Enabling Objective: The Objectives are defined as to set for guiding the teacher and students to attain the end result of the particular unit of work or lesson.

Instructional Guide: is a well-planned and structured document for the instructor to deliver effective instruction so that trainees can attain learning is objectives as per training standards.

Module: A module is defined as a specialized learning material. Modules are essentially selfcontained. Self-instructional packages, with learning paced by each learner according to his/her individual ability and needs. A module covers either a single element of subject matter content or a group of content elements forming a discrete unit of subject matter or area of skills.

Occupational Analysis: is a process used to identify the duties and tasks that are important to workers in any given occupation. A number of alternative and acceptable approaches to occupational analysis are available.

Program guide: A program guide is a comprehensive resource for teachers, planners, and top-level management for planning and implementation of any training programs.

Program Objectives: The objectives are set in a broad way to target to achieve mastery learning of the complete occupation.

Related Technical Knowledge: Knowledge essential to perform a task/ step in complete, accurate and safe manner.

Skill: The ability to perform on occupational task with the degree of proficiency required for a given occupation

Step: The smallest discrete or observable aspect of a task.

Task Analysis: Task analysis is the process of identifying and writing down the specialized skills, knowledge and attitudes that distinguish someone who performs a task competently from someone who cannot perform the task at all.

Task: A unit of work complete in itself that forms a logical part of on occupation. It can be broken down into discrete steps.

Terminal Performance Objective: The objectives set to attain at the end of the training completion. It includes condition, unit of work and standard of teaching and learning.